Virus transport from drywells under constant head conditions: A modeling study.

Water Res

U.S. Environmental Protection Agency, Office of Research and Development, San Francisco, CA 94105, USA.

Published: June 2021

AI Article Synopsis

  • Many arid regions struggle with water quality and availability for growing populations, highlighting the importance of drywells for stormwater capture and aquifer recharge.
  • This study used numerical experiments to investigate how viruses behave and move away from drywells in different soil conditions, finding that virus concentration can remain high even up to 22 meters away.
  • Results showed that virus removal efficiency is influenced by soil heterogeneity, with certain configurations enhancing virus movement and suggesting that traditional distance guidelines for protecting water quality may need to be reassessed.

Article Abstract

Many arid and semi-arid regions of the world face challenges in maintaining the water quantity and quality needs of growing populations. A drywell is an engineered vadose zone infiltration device widely used for stormwater capture and managed aquifer recharge. To our knowledge, no prior studies have quantitatively examined virus transport from a drywell, especially in the presence of subsurface heterogeneity. Axisymmetric numerical experiments were conducted to systematically study virus fate from a drywell for various virus removal and subsurface heterogeneity scenarios under steady-state flow conditions from a constant head reservoir. Subsurface domains were homogeneous or had stochastic heterogeneity with selected standard deviation (σ) of lognormal distribution in saturated hydraulic conductivity and horizontal (X) and vertical (Z) correlation lengths. Low levels of virus concentration tailing can occur even at a separation distance of 22 m from the bottom of the drywell, and 6-log virus removal was not achieved when a small detachment rate (k=1 × 10⁻⁵ min⁻¹) is present in a homogeneous domain. Improved virus removal was achieved at a depth of 22 m in the presence of horizontal lenses (e.g., X=10 m, Z=0.1 m, σ=1) that enhanced the lateral movement and distribution of the virus. In contrast, faster downward movement of the virus with an early arrival time at a depth of 22 m occurred when considering a vertical correlation in permeability (X=1 m, Z=2 m, σ=1). Therefore, the general assumption of a 1.5-12 m separation distance to protect water quality may not be adequate in some instances, and site-specific microbial risk assessment is essential to minimize risk. Microbial water quality can potentially be improved by using an in situ soil treatment with iron oxides to increase irreversible attachment and solid-phase inactivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9126062PMC
http://dx.doi.org/10.1016/j.watres.2021.117040DOI Listing

Publication Analysis

Top Keywords

virus removal
12
virus
9
virus transport
8
constant head
8
subsurface heterogeneity
8
vertical correlation
8
separation distance
8
removal achieved
8
depth 22 m
8
water quality
8

Similar Publications

Modeling virus filtration: Materials, applications, and mechanism.

iScience

January 2025

Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.

While various methods are employed to ensure the virus safety of finished products, virus filtration (VF) stands out as the preferred method for virus removal and purification of a wide variety of products owing to its capability of separating product molecules with more than 90% recovery and no change in molecule characteristics. The modeling of the virus removal process for VF membranes is based on the principles of microfiltration (MF) and ultrafiltration (UF), but with modifications for the much narrower separation difference, which is less than 2-fold for the separation of product molecules and virus particles. In this review, we introduce the materials and application of VF highlighting the unique characteristics properties of VF membranes through the steps of invention and subsequent development.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Mechanical properties of the nucleus are remodeled not only by extracellular forces transmitted to the nucleus but also by internal modifications, such as those induced by viral infections. During herpes simplex virus type 1 infection, the viral regulation of essential nuclear functions and growth of the nuclear viral replication compartments are known to reorganize nuclear structures. However, little is known about how this infection-induced nuclear deformation changes nuclear mechanobiology.

View Article and Find Full Text PDF

Background: The burden of Aedes aegypti-transmitted viruses such as dengue, chikungunya, and Zika are increasing globally, fueled by urbanization and climate change, with some of the highest current rates of transmission in Asia. Local factors in the built environment have the potential to exacerbate or mitigate transmission.

Methods: In 24 informal urban settlements in Makassar, Indonesia and Suva, Fiji, we tested children under 5 years old for evidence of prior infection with dengue, chikungunya, and Zika viruses by IgG serology.

View Article and Find Full Text PDF

Diverse strategies utilized by coronaviruses to evade antiviral responses and suppress pyroptosis.

Int J Biol Macromol

January 2025

Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Animal Virology of Ministry of Agriculture, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China; Zhejiang University-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, China. Electronic address:

Viral infections trigger inflammasome-mediated caspase-1 activation. Nevertheless, limited understanding exists regarding how viruses use the active caspase-1 to evade host immune response. Here, we use porcine epidemic diarrhea virus (PEDV) as a model of coronaviruses (CoVs) to illustrate the intricate regulation of CoVs to combat IFN-I signaling and pyroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!