A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stiffness-tuneable nanocarriers for controlled delivery of ASC-J9 into colorectal cancer cells. | LitMetric

Stiffness-tuneable nanocarriers for controlled delivery of ASC-J9 into colorectal cancer cells.

J Colloid Interface Sci

Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China. Electronic address:

Published: July 2021

Hypothesis: One of the main challenges in cancer therapy is the poor water solubility of many anticancer drugs which results in low bioavailability at the tumour sites and reduced efficacy. The currently available polymer-based anticancer drug delivery systems often suffer from low encapsulation efficiency, uncontrolled release, and lack of long-term stability. Herein, we report the development of novel stiffness-tuneable core-shell nanocarriers composed of naturally derived polymers silk fibroin (SF) and sodium alginate (SA) inside a liposomal shell for enhanced cellular uptake and controlled release of hydrophobic anticancer agent ASC-J9 (Dimethylcurcumin). It is anticipated that the stiffness of the nanocarriers has a significant effect on their cellular uptake and anticancer efficacy.

Experiments: The nanocarriers were prepared by thin film hydration method followed by extrusion and cross-linking of SA to obtain a uniform size and shape, avoiding harsh processing conditions. The structural transformation of SF in the nanocarriers induced by SA crosslinking was determined using Fourier transform infrared (FTIR) spectroscopy. The size, zeta potential, morphology and stiffness of the nanocarriers were measured using dynamic light scattering (DLS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Drug loading and release were measured using UV-Vis spectrophotometry. The cellular uptake and anticancer efficacy of the nanocarriers were studied in HCT 116 human colorectal adenocarcinoma cells and 3D tumour spheroids using high content microscopy.

Findings: The synthesized nanocarriers had high encapsulation efficiency (62-78%) and were physically stable for up to 5 months at 4 ˚C. The release profile of the drug from the nanocarriers was directed by their stiffness and was easily tuneable by changing the ratio of SF to SA in the core. Furthermore, the designed nanocarriers improved the cellular uptake and anticancer activity of ASC-J9, and enhanced its tumour penetration in HCT 116 3D colorectal cancer spheroids. These findings suggest that the designed core-shell nanocarriers can be used as a highly efficient drug delivery system for cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.03.086DOI Listing

Publication Analysis

Top Keywords

cellular uptake
16
uptake anticancer
12
nanocarriers
10
colorectal cancer
8
cancer therapy
8
drug delivery
8
encapsulation efficiency
8
core-shell nanocarriers
8
stiffness nanocarriers
8
hct 116
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!