Objective: This study aimed to provide further information on the exact mechanisms involved in the anti-inflammatory effect of low-intensity pulsed ultrasound (LIPUS) on rabbit temporomandibular joint osteoarthritis (TMJOA) on interleukin-6 (IL-6) production in subchondral bone, IL-6 production in IL-1β stimulated via inhibition of the TGF-β1/Smad3 pathway in mouse embryo osteoblast precursor (MC3T3-E1) cells.
Design: Bilateral joints were injected with type II collagenase to establish TMJOA models in two male and four female rabbits. The left joint was continuously stimulated by LIPUS, while the right joint was treated with the power off in this model. One male and two female rabbits were used as normal healthy controls without treatment. The histological features of subchondral bone were examined by Safranin-O/Fast staining. Immunohistochemistry was conducted to evaluate IL-6 expression. Then, cells were stimulated by LIPUS with IL-1β. IL-6 expression and activity of the TGF-β1/Smad3 pathway were evaluated by Enzyme-linked immunosorbent assay (ELISA), Immunofluorescence and Western blotting, respectively. Specific inhibition of the TGF-β1/Smad3 pathway was conducted by transfecting with small interfering RNA (siRNA) of type II receptor (siTβRII).
Results: LIPUS significantly ameliorated the production of IL-6 in vitro and in vivo. Its inhibitory effect on the production of IL-6 induced by IL-1β in MC3T3-E1 cells was partly reversed by siTβRII knockdown.
Conclusions: LIPUS inhibited IL-6 production by suppressing the TGF-β1/Smad3 pathway of subchondral bone in TMJOA. These data revealed the part of the pathways involved in the anti-inflammatory effect of LIPUS and provided a possible treatment strategy for TMJOA patients and other inflammatory diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2021.105110 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!