Background: Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a powerful technique for interrogating neural circuit dysfunction in psychiatric disorders. Here, we utilized time-frequency analyses to characterize differences in neural oscillatory dynamics between subjects with major depressive disorder (MDD) and healthy controls (HC). We further examined changes in TMS-related oscillatory power following convulsive therapy.

Methods: Oscillatory power was examined following TMS over the dorsolateral prefrontal and motor cortices (DLPFC and M1) in 38 MDD subjects, and 22 HCs. We further investigated how these responses changed in the MDD group following an acute course of convulsive therapy (either magnetic seizure therapy [MST, n = 24] or electroconvulsive therapy [ECT, n = 14]).

Results: Prior to treatment, MDD subjects exhibited increased oscillatory power within delta, theta, and alpha frequency bands with TMS-EEG over the DLPFC, but showed no differences to HCs with stimulation over M1. Following MST, DLPFC stimulation revealed attenuated baseline-normalized power in the delta and theta bands, with reductions in the delta, theta, and alpha power following ECT. TMS over M1 revealed reduced delta and theta power following ECT, with no changes observed following MST. An association was also observed between the treatment- induced change in alpha power and depression severity score.

Limitations: Limitations include the modest sample size, open-label MST and ECT treatment designs, and lack of a placebo condition.

Conclusions: These results provide evidence of alterations in TMS-related oscillatory activity in MDD, and further suggest modulation of oscillatory power following ECT and MST.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2021.03.010DOI Listing

Publication Analysis

Top Keywords

oscillatory power
16
delta theta
16
power ect
12
major depressive
8
depressive disorder
8
convulsive therapy
8
tms-related oscillatory
8
power
8
mdd subjects
8
power delta
8

Similar Publications

Background: Selective attention is a fundamental cognitive mechanism that allows people to prioritise task-relevant information while ignoring irrelevant information. Previous research has suggested key roles of parietal event-related potentials (ERPs) and alpha oscillatory responses in attention tasks. However, the informational content of these signals is less clear, and their causal effects on the coding of multiple task elements are yet unresolved.

View Article and Find Full Text PDF

In the last few years, transcranial alternating current stimulation (tACS) has attracted attention as a promising approach to interact with ongoing oscillatory cortical activity and, consequently, to enhance cognitive and motor processes. While tACS findings are limited by high variability in young adults' responses, its effects on brain oscillations in older adults remain largely unexplored. In fact, the modulatory effects of tACS on cortical oscillations in healthy aging participants have not yet been investigated extensively, particularly during movement.

View Article and Find Full Text PDF

Unlabelled: While visual working memory (WM) is strongly associated with reductions in occipitoparietal 8-12 Hz alpha power, the role of 4-7 Hz frontal midline theta power is less clear, with both increases and decreases widely reported. Here, we test the hypothesis that this theta paradox can be explained by non-oscillatory, aperiodic neural activity dynamics. Because traditional time-frequency analyses of electroencephalopgraphy (EEG) data conflate oscillations and aperiodic activity, event-related changes in aperiodic activity can manifest as task-related changes in apparent oscillations, even when none are present.

View Article and Find Full Text PDF

In renewable power systems, the interaction between generators, power electronic devices, and the grid has led to frequent high-frequency oscillation (HFO) events. These events can result in significant generation losses and pose serious threats to system stability. Therefore, the rapid and accurate HFO parameter estimation is crucial for early warning and effective mitigation of HFO.

View Article and Find Full Text PDF

Neural oscillations predict flow experience.

Cogn Neurodyn

December 2025

Department of Psychological and Cognitive Sciences, Tsinghua University, Beijing, 100084 China.

Flow experience, characterized by immersion in the activity at hand, provides a motivational boost and promotes positive behaviors. However, the oscillatory representations of flow experience are still poorly understood. In this study, the difficulty of the video game was adjusted to manipulate the individual's personalized flow or non-flow state, and EEG data was recorded throughout.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!