The disintegration of natural water sources signals out the scarcity of adam's ale and will be hurdle for the human physical state. So it is necessary to decrease waste loads and hence pressure on the ecology for the sustainability of fishery and dye industry. Herein, TiO nanoparticles doped with Sn and F are synthesized and the influence of simultaneous doping on the optical, surface morphological, structural, photocatalytic and antibacterial activities are investigated. Doping of TiO with Sn and F suppress the growth of both anatase and rutile phase because of the dissimilar boundaries. All the prepared doped and undoped samples are found to possess tetragonal structure. The influence of F and Sn in TiO lattice is recognized with the XRD and FT-IR spectra of the prepared particles The size of the obtained nanoparticles decreases as increasing concentration of F and Sn. TiO is showing the presence of spherical and ellipsoidal nanoparticles whereas doped samples showing nanobulk, pentagons and rods. The absorption edge of the doped samples are blue shifted with increasing concentration of dopants indicates the control of optical absorption property of TiO The visible light assisted photocatalytic degradation of fish processing waste water by doped and undoped samples are found to be established as 0.0076/min and 0.0071/min respectively. Visible light assisted degradation of commercially available dyes and fish processing waste water is assessed. Methyl blue showed enhanced photocatalytic activity under visible light irradiation compared to Methyl orange. It is observed that all the prepared particles show good antimicrobial activity against Staphylococcus aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!