A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coherent light emission in cathodoluminescence when using GaAs in a scanning (transmission) electron microscope. | LitMetric

For most materials science oriented applications incoherent cathodoluminescence (CL) is of main interest, for which the recombination of electron-hole pairs yields the emission of light. However, the incoherent signal is superimposed by coherently excited photons, similar to the situation for X-rays in Energy-Dispersive X-ray spectra (EDX). In EDX two very different processes superimpose in each spectrum: Bremsstrahlung and characteristic X-ray radiation. Both processes yield X-rays, however, their origin is substantially different. Therefore, in the present CL study we focus on the coherent emission of light, in particular Čerenkov radiation. We use a 200μm thick GaAs sample, not electron transparent and therefore not acting as a light guide, and investigate the radiation emitted from the top surface of the sample generated by back-scattered electrons on their way out of the specimen. The CL spectra revealed a pronounced peak corresponding to the expected interband transition. This peak was at 892 nm at room temperature and shifted to 845 nm at 80 K. The coherent light emission significantly modifies the shape of CL spectra at elevated beam energies. For the first time, by the systematic variation of current and energy of primary electrons we could distinguish the coherent and incoherent light superimposed in CL spectra. These findings are essential for the correct interpretation of CL spectra in STEM. The Čerenkov intensity as well as the total intensity in a spectrum scales linearly with the beam current. Additionally, we investigate the influence of asymmetric mirrors on the spectral shapes, collecting roughly only half of the whole solid angle. Different emission behaviour of different physical causes thus lead to changes in the overall spectral shape.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2021.113260DOI Listing

Publication Analysis

Top Keywords

coherent light
8
light emission
8
emission light
8
emission
5
light
5
spectra
5
coherent
4
emission cathodoluminescence
4
cathodoluminescence gaas
4
gaas scanning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!