AI Article Synopsis

  • PFDoA (Perfluorododecanoic acid) is an endocrine disruptor found in contaminated food and water, and its effects on Leydig cell regeneration from stem Leydig cells are not well understood.
  • In a study with adult male rats, PFDoA exposure led to reduced serum testosterone and hormone levels, decreased Leydig cell numbers, and inhibited proliferation at higher doses after Leydig cell elimination.
  • PFDoA also down-regulated the expression of specific genes and proteins related to Leydig and Sertoli cells, suggesting that short-term exposure impairs Leydig cell regeneration through multiple mechanisms.

Article Abstract

Perfluorododecanoic acid (PFDoA) is an endocrine-damaging compound in contaminated food and water. However, the potential role and underlying mechanism of PFDoA in Leydig cell regeneration from stem Leydig cells remain unclear. The current study aims to investigate the effect of PFDoA on the regeneration of Leydig cells in the testis of rats treated with ethylene dimethane sulfonate (EDS). PFDoA (0, 5 or 10 mg/kg/day) was gavaged to adult Sprague-Dawley male rats for 8 days, and 75 mg/kg EDS was intraperitoneally injected to eliminate Leydig cells to initiate its regeneration from day 21-56 after EDS. The serum testosterone levels in the 5 and 10 mg/kg/day PFDoA groups were significantly reduced at day 21 after EDS and the levels of serum luteinizing hormone and follicle-stimulating hormone were significantly decreased in the 10 mg/kg/day PFDoA groups at day 56 after EDS. PFDoA significantly reduced Leydig cell number and proliferation at a dose of 10 mg/kg at days 21 and 56 after EDS. PFDoA significantly down-regulated the expression of Leydig cell-specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1 and Cyp17a1) and their proteins at both doses at days 21 and 56 after EDS. PFDoA significantly down-regulated the gene expression of Sertoli cells (Fshr, Dhh, and Sox9) at 5 mg/kg or higher at days 21 and 56 after EDS. In addition, we found that PFDoA significantly inhibited EdU incorporation into putative stem Leydig cells and their differentiation into the Leydig cell lineage in vitro. In conclusion, short-term PFDoA exposure in adulthood delayed the regeneration of Leydig cells by preventing Leydig cells from stem cells via multiple mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2021.112152DOI Listing

Publication Analysis

Top Keywords

leydig cells
24
leydig cell
16
eds pfdoa
16
days eds
12
leydig
11
pfdoa
11
cells
9
perfluorododecanoic acid
8
cell regeneration
8
regeneration stem
8

Similar Publications

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

The role of luteinizing hormone activity in spermatogenesis: from physiology to clinical practice.

Reprod Biol Endocrinol

January 2025

Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark.

The production of spermatozoa, a process known as spermatogenesis, is primarily controlled by follicle-stimulating hormone (FSH) and luteinizing hormone (LH)-driven testosterone. LH acts on the Leydig cells, stimulating steroid production, predominantly testosterone, and activating critical inter-related spermatogenesis regulatory pathways. Despite evidence that exogenous gonadotropins containing LH activity can effectively restore spermatogenesis in males with hypogonadotropic hypogonadism, the use of these drugs to treat other forms of male infertility is the subject of an ongoing debate.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates adrenomedullin's (ADM) role in protecting estrogen production in Leydig cells by targeting the TGF-β1/Smads signaling pathway.
  • Treatment with ADM via recombinant adenovirus (Ad-ADM) in Leydig cells improved cell viability and hormone production in the presence of lipopolysaccharide (LPS), a compound that can induce cellular stress.
  • Results indicated that Ad-ADM not only maintained testosterone production and aromatase activity but also reduced the harmful effects of TGF-β1 and Smads, suggesting that ADM supports the overall hormone balance in Leydig cells.
View Article and Find Full Text PDF

Late-onset hypogonadism (LOH) refers to sexual and non-sexual symptoms in men caused by age-related decreases in circulating testosterone. Leydig cells (LCs) transplantation is considered to be one of a viable approach for LOH therapy, but the limited source of LCs limits the application of this approach. The aim of this study was to induce the directed differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into LCs in vitro, and explore the potential involvement of Wnt/β-catenin signaling pathway in the differentiation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!