Identifying the presence of brominated flame retardants (BFRs) within individual polymer types prior to extrusion has given us a unique perspective on which polymers may be problematic in meeting European Union (EU) low persistent organic pollutant (POP) content limits (LPCLs) and the potential for mixed engineering plastics (MEP) to be used as a viable recycled product. Our findings suggest that careful management of the polymer types within the feed chips prior to extrusion could deliver extruded polymer pellets that meet the EU LPCL values for POP-BFRs (i.e. <1000 mg/kg). Within this study, three fractions of extruded polymer pellets ("light", "medium", and "heavy" MEP) were created using density separation. Each fraction was characterised for 28 legacy and novel BFRs with brominated diphenyl ether-209 (BDE-209) (68-37,000 mg/kg) and tetrabromobisphenol-A (TBBP-A) (17-120,000 mg/kg) both predominant and ubiquitous. Portable X-ray fluorescence (XRF) was utilised to measure Br in 120 individual MEP chips of various polymer types. Those chips that XRF flagged as having high Br concentrations (>2500 mg/kg) were subjected to further evaluation for BFR content via mass spectrometry analysis and the results compared with the XRF Br data. This revealed that in 22% of the 120 chips studied, XRF incorrectly identified the LPCL to be exceeded. Our data also identifies the presence of the novel BFRs decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) in plastics derived from waste electronic and electrical equipment (WEEE). While the "light-MEP" samples contained POP-BFR concentrations below LPCLs, the "medium-MEP" and "heavy-MEP" fractions exceeded such limits. Management of the polymer chips by colour sorting resulted in significant reductions in concentrations of all BFRs in the clear polymers such that LPCL limits were not exceeded; however, concentration reductions in white polymers were insufficient to meet LPCLs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146543 | DOI Listing |
Front Public Health
January 2025
The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China.
Background: The association between brominated flame retardants (BFRs) and periodontitis has remained unclear.
Methods: This research included adult participants from NHANES cycles 2009-2014. Survey-weighted generalized linear regressions were used to explore the associations between BFR exposure and periodontitis.
J Hazard Mater
December 2024
Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China; Hubei Provincial Center for Disease Control and Prevention & NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Wuhan 430079, China; Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430072, China. Electronic address:
Prenatal exposure to hazardous environmental pollutants is a critical global concern due to their confirmed presence in umbilical cord blood, indicating the ability of pollutants to cross the placental barrier and expose the fetus to harmful compounds. However, the transplacental transfer efficiencies (TTEs) of many pollutants remain underexplored. Herein, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantitatively analyze 91 environmental pollutants, including 13 bisphenols (BPs), 18 organophosphorus flame retardants (OPFRs), 7 brominated and other flame retardants (BFRs), 34 phthalates (PAEs), and 19 per- and polyfluoroalkyl substances (PFASs), in paired maternal and cord serums.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Occupational and Environmental Health, MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Electronic address:
The brominated flame retardant 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) is known as a developmental neurotoxicant, yet the underlying mechanisms remain unclear. This study aims to explore its neurotoxic mechanisms by integrating network toxicology with transcriptomics based on human neural precursor cells (hNPCs) and neuron-like PC12 cells. Network toxicology revealed that PBDE-47 crosses the blood-brain barrier more effectively than heavier PBDE congeners, and is associated with disruptions in 159 biological pathways, including cytosolic DNA-sensing pathway, ferroptosis, cellular senescence, and chemokine signaling pathway.
View Article and Find Full Text PDFToxicology
December 2024
Helmholtz Centre for Environmental Research - UFZ, Department Ecotoxicology, Leipzig, Germany; Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium.
Novel flame retardants (NFRs) have emerged as chemicals of environmental health concern due to their widespread use as an alternative to polybrominated diphenyl ethers (PBDE) in electrical and electronic devices. Humans and ecosystems are under threat because of e-waste recycling procedures that may emit NFRs and other anthropogenic chemicals into the e-waste workplace and the surrounding environment. The individual toxicity of NFRs including novel brominated flame retardants (NBFRs), their combined effects and the underlying mechanisms of toxicity have remained poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Minderoo Foundation, Perth, WA 6000, Australia.
More than 16,000 chemicals are incorporated into plastics to impart properties such as color, flexibility, and durability. These chemicals may leach from plastics, resulting in widespread human exposure during everyday use. Two plastic-associated chemicals-bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP)-and a class of chemicals-brominated flame retardants [polybrominated diphenyl ethers (PBDEs)]-are credibly linked to adverse health and cognitive impacts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!