The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.125008DOI Listing

Publication Analysis

Top Keywords

microalgae
9
co-culture fungi-microalgae
8
wastewater treatment
8
microalgae harvesting
8
fungi-microalgae consortium
4
wastewater
4
consortium wastewater
4
treatment review
4
review treatment
4
treatment wastewater
4

Similar Publications

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Hearing loss is one of the most common sensory disorders in humans, and a large number of cases are due to ear cell damage caused by ototoxic drugs including anticancer agents, such as cisplatin. The recent literature reported that hearing loss is promoted by an excessive generation of reactive oxygen species (ROS) in cochlea cells, which causes oxidative stress. Recently, polysaccharides from the cyanobacterium showed many biological activities, including antioxidant activity, suggesting their potential use to combat hearing loss.

View Article and Find Full Text PDF

Resilience of to Simulated Atmospheric Gas Compositions of Mars, Jupiter, and Titan.

Life (Basel)

January 2025

Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.

This study investigates the resilience of the unicellular green microalga to extreme atmospheric conditions simulating those of Mars, Jupiter, and Titan. Using Earth as a control, experiments were conducted under autotrophic and mixotrophic conditions to evaluate the organism's photosynthetic efficiency, oxygen production, and biomass growth over 2, 5, and 12 days. Photosynthetic performance was analyzed through chlorophyll a fluorescence induction (JIP-test), metabolic activity via gas chromatography, and biomass accumulation measurements.

View Article and Find Full Text PDF

Mechanism of Transcription Factor ChbZIP1 Enhanced Alkaline Stress Tolerance in .

Int J Mol Sci

January 2025

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.

Alkaline environments such as alkaline lands, lakes, and industrial wastewater are not conducive to the growth of plants and microorganisms due to high pH and salinity. ChbZIP1 is a bZIP family transcription factor isolated from an alkaliphilic microalgae ( sp. BLD).

View Article and Find Full Text PDF

The impact of the world's growing population on food systems and the role of dietary patterns in the management of non-communicable diseases underscore the need to explore sustainable and dietary protein sources. Although microalgae have stood out as alternative sources of proteins and bioactive peptides, some species such as remain unexplored. This study aimed to characterize 's proteome and evaluate its potential as a source of bioactive peptides by using an in silico approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!