The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel.

J Mech Behav Biomed Mater

Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, El Paso, TX, 79968, USA.

Published: June 2021

AI Article Synopsis

Article Abstract

Micro/nano-scale deformation behavior including hardness, elastic modulus, and pop-ins, was studied in a medical austenitic stainless steel followed by post-mortem EBSD characterization. Relatively higher hardness and modulus was observed near {101} and more pop-ins occurred in this orientation at high loading rate. The activation volume (v) obtained from nanoindentation had weak dependence on grain orientation and was ~10-20 b, indicating that neither diffusional creep processes nor conventional dislocation segments passing through dislocation forests controls plastic deformation in our study. The plastic zone radius (c) and the distance of the indent from the grain boundary (d) were used to describe the effect of grain boundary on the pop-in effect. The ratio of c/d meets amplitude version of Gaussian peak function distribution for a given orientation, whose peak value remains nearly constant for all the orientations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2021.104473DOI Listing

Publication Analysis

Top Keywords

grain boundary
12
grain orientation
8
austenitic stainless
8
stainless steel
8
synergistic grain
4
grain
4
boundary grain
4
orientation
4
orientation micro-mechanical
4
micro-mechanical properties
4

Similar Publications

Ductilization of 2.6-GPa alloys via short-range ordered interfaces and supranano precipitates.

Science

January 2025

Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), Hysitron Applied Research Center in China (HARCC) and Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.

Higher strength and higher ductility are desirable for structural materials. However, ultrastrong alloys inevitably show decreased strain-hardening capacity, limiting their uniform elongation. We present a supranano (<10 nanometers) and short-range ordering design for grain interiors and grain boundary regions, respectively, in fine-grained alloys based on vanadium, cobalt, and nickel, with additions of tungsten, copper, aluminum, and boron.

View Article and Find Full Text PDF

Enhanced Mechanical Properties in Bulk Nanograined Ni with High-Density Fivefold Twins.

Small

January 2025

Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.

Fivefold twins are extensively present in nanoparticles and nanowires, enhancing their performance in physical, chemical, and mechanical properties. However, a deep insight into the correlation between mechanical properties and fivefold twins in bulk nanograined materials is lacking due to synthesis difficulties. Here, a bulk fivefold-twinned nanograined Ni is synthesized via electrodeposition.

View Article and Find Full Text PDF

In this review, we present a new set of machine learning-based materials research methodologies for polycrystalline materials developed through the Core Research for Evolutionary Science and Technology project of the Japan Science and Technology Agency. We focus on the constituents of polycrystalline materials (i.e.

View Article and Find Full Text PDF

Context: The influence of fullerene C60 on the mechanical and thermal properties of natural rubber was systematically investigated using coarse-grained molecular dynamics simulations. The tensile results demonstrate that systems with longer NR chains exhibit reduced tensile strength. Moreover, the addition of C60 nanoparticles significantly enhanced the mechanical properties, with Young's modulus, yield strength, and tensile strength increasing by approximately 24.

View Article and Find Full Text PDF

Mechanical forces continuously provide feedback to heart valve morphogenetic programs. In zebrafish, cardiac valve development relies on heart contraction and physical stimuli generated by the beating heart. Intracardiac hemodynamics, driven by blood flow, emerge as fundamental information shaping the development of the embryonic heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!