Interconnection of iron and osmotic stress signalling in plants: is FIT a regulatory hub to cross-connect abscisic acid responses?

Plant Biol (Stuttg)

Institute of Botany, Heinrich Heine University, Universitätsstr. 1, Düsseldorf, Germany.

Published: May 2021

Osmotic stresses, such as salinity and drought, have deleterious effects on uptake and translocation of essential mineral nutrients. Iron (Fe) is an important micronutrient that regulates many processes in plants. Plants have adopted various molecular and physiological strategies for Fe acquisition from soil and transport to and within plants. Dynamic Fe signalling in plants tightly regulates Fe uptake and homeostasis. In this way, Fe nutrition is adjusted to growth and stress conditions, and Fe deficiency-regulated transcription factors, such as FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), act as regulatory hubs in these responses. Here, we review and analyse expression of the various components of the Fe signalling during osmotic stresses. We discuss common players in the Fe and osmotic stress signalling. Furthermore, this review focuses on exploring a novel and exciting direct connection of regulatory mechanisms of Fe intake and acquisition with ABA-mediated environmental stress cues, like salt/drought. We propose a model that discuss how environmental stress affects Fe uptake and acquisition and vice versa at molecular-physiological levels in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1111/plb.13261DOI Listing

Publication Analysis

Top Keywords

osmotic stress
8
stress signalling
8
signalling plants
8
fit regulatory
8
osmotic stresses
8
environmental stress
8
plants
6
stress
5
interconnection iron
4
osmotic
4

Similar Publications

The high interstitial ATP concentration in the cancer microenvironment is a major source of adenosine, which acts as a strong immune suppressor. However, the source of ATP release has not been elucidated. We measured ATP release during hypotonic stress using a real-time ATP luminescence imaging system in breast cell lines and in primary cultured mammary cells.

View Article and Find Full Text PDF

Effect of halo-tolerance gene Hal5 on ethanol tolerance of .

BBA Adv

October 2024

Department of Biochemistry, Panjab University, Chandigarh 160014, India.

Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.

View Article and Find Full Text PDF

The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of ( emphasizes the critical requirement for novel potent drugs. The demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host.

View Article and Find Full Text PDF

The quality and quantity of stripped and testicular wild northern pike (Esox lucius) sperm was compared and the effectiveness of short-term storage was assessed. Stripped sperm (SS) was collected using abdominal massage. Next, the fish were decapitated and the testes were removed.

View Article and Find Full Text PDF

SnRK2 kinases sense molecular crowding and form condensates to disrupt ABI1 inhibition.

Sci Adv

January 2025

Key Laboratory of Plant Carbon Capture, Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.

Plants sense and respond to hyperosmotic stress via quick activation of sucrose nonfermenting 1-related protein kinase 2 (SnRK2). Under unstressed conditions, the protein phosphatase type 2C (PP2C) in clade A interact with and inhibit SnRK2s in subgroup III, which are released from the PP2C inhibition via pyrabactin resistance 1-like (PYL) abscisic acid receptors. However, how SnRK2s are released under osmotic stress is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!