Droplet-Based Techniques for Printing of Functional Inks for Flexible Physical Sensors.

Adv Mater

Department of Engineering, Aarhus University, Finlandsgade 22, Aarhus, 8200, Denmark.

Published: May 2021

Printed electronics (PE) is an emerging technology that uses functional inks to print electrical components and circuits on variety of substrates. This technology has opened up new possibilities to fabricate flexible, bendable, and form-fitting devices at low-cost and fast speed. There are different printing technologies in use, among which droplet-based techniques are of great interest as they provide the possibility of printing computer-controlled design patterns with high resolution, and greater production flexibility. Nanomaterial inks form the heart of this technology, enabling different functionalities. To this end, intensive research has been carried out on formulating inks with conductive, semiconductive, magnetic, piezoresistive, and piezoelectric properties. Here, a detailed landscape view on different droplet-based printing technologies (inkjet, aerosol jet, and electrohydrodynamic jet) is provided, with comprehensive discussion on their working principals. This is followed by a detailed research overview of different functional inks (metal, carbon, polymer, and ceramic). Different sintering methods and common substrates being used in printed electronics are also discussed, followed by an in-depth review of different physical sensors fabricated by droplet-based techniques. Finally, the challenges facing the field are considered and a perspective on possible ways to overcome them is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202006792DOI Listing

Publication Analysis

Top Keywords

droplet-based techniques
12
functional inks
12
physical sensors
8
printed electronics
8
printing technologies
8
inks
5
droplet-based
4
printing
4
techniques printing
4
printing functional
4

Similar Publications

Enhancing single-cell transcriptomics using interposed anchor oligonucleotide sequences.

Commun Biol

January 2025

Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford, UK.

Single-cell transcriptomics, which utilises barcodes and unique molecular identifiers (UMIs) for polyA+ mRNA capture, is compromised by oligonucleotide synthesis errors. To address this, we modified the oligonucleotide capture design and integrated an interposed anchor between the barcode and the UMI. This design significantly reduces the need to discard reads due to synthesis inaccuracies.

View Article and Find Full Text PDF

Ionic Strength-Induced Compartmentalization for Nanogel-in-Microgel Colloids.

Small

January 2025

DWI-Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany.

Compartmentalization is crucial for control over complex biological cascade reactions. In microgels, the formation of discrete compartments allows for simultaneous uptake and orthogonal release of physicochemically distinct drugs, among others. However, many state-of-the-art approaches yielding compartmentalized microgels require the use of specific, though not always biocompatible, components and temperatures well above the physiological range, which may damage possible biological cargo.

View Article and Find Full Text PDF

Droplet-Based EPR Spectroscopy for Real-Time Monitoring of Liquid-Phase Catalytic Reactions.

Small Methods

January 2025

Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.

View Article and Find Full Text PDF

Single-Cell Profiling of Lineages and Cell Types in the Vertebrate Brain.

Methods Mol Biol

January 2025

Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • CRISPR-Cas tools have been enhanced for tracking cell lineages during development, allowing for detailed analysis at single-cell resolution.
  • scGESTALTv2 integrates CRISPR-Cas9 editing of a lineage barcode with single-cell RNA sequencing (scRNA-seq) to track cellular development.
  • This method is applied in zebrafish brains, enabling the identification of cellular relationships among thousands of brain cells and various cell types.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!