Gaseous and particulate reactive nitrogen species in the indoor air of selected households in New Delhi.

Environ Monit Assess

School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.

Published: March 2021

The present study reports the indoor abundance of inorganic trace gases (NH, NO and SO) and their corresponding particulates (NH, NO and SO) along with other major ionic species present in the aerosol form (Cl, F, Na, K, Ca and Mg), in the urban households of megacity Delhi (India). Two different households (DH site and MH site) were selected in the city based on the variation in the land use patterns of the locations in which they were situated. Trace gases followed the order NH > SO > NO at both the sites with NH contributing about 90% and 85% to the total Nr species at DH and MH sites, respectively. NH showed maximum indoor concentrations during monsoon season whereas NO and SO were higher during winter season. The gas to particle conversion of the inorganic trace gases was studied by calculating their oxidation ratios which followed the order SOR > NOR > NHR, indicating that SO showed more oxidative conversion to SO as compared to NO and NH in the indoor setup. The chemical composition of the particulates revealed that Ca and SO were the most abundant cation and anion, respectively, among the measured ionic species at both sites and the concentrations of all the major ions were higher for the industrial MH site as compared to the residential DH site. Source apportionment using principal component analysis and mass ratios showed that indoor activities such as cooking, cleaning along with others such as biomass burning and dust resuspension were responsible for the indoor composition of particulates at DH site whereas outdoor influences such as coal burning and industrial emissions from local sources were prominent at MH site due to its industrialized surroundings. For naturally ventilated households (such as the present study), it was observed that the emissions generated indoors as well as the characteristic outdoor influences seem to influence the overall indoor air composition and quality.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-021-08991-6DOI Listing

Publication Analysis

Top Keywords

trace gases
12
indoor air
8
inorganic trace
8
ionic species
8
species sites
8
composition particulates
8
outdoor influences
8
indoor
7
site
6
gaseous particulate
4

Similar Publications

The exploration of pure organic ultra-long room temperature phosphorescence (RTP) materials has emerged as a research hotspot in recent years. Herein, a simple strategy for fabricating long-afterglow polymer aerogels with three-dimensional ordered structures and environmental monitoring capabilities is proposed. Based on the non-covalent interactions between pectin (PC) and melamine formaldehyde (MF), a composite aerogel (PCMF@phenanthrene) (PCMF@PA) doped with phosphorescent organic small molecules was constructed.

View Article and Find Full Text PDF

Carbon Black Absorption Enhanced Fiber-Optic Photoacoustic Gas Sensing System with Ultrahigh Sensitivity.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.

View Article and Find Full Text PDF

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

This research proposes an all-metal metamaterial-based absorber with a novel geometry capable of refractive index sensing in the terahertz (THz) range. The structure consists of four concentric diamond-shaped gold resonators on the top of a gold metal plate; the resonators increase in height by 2 µm moving from the outer to the inner resonators, making the design distinctive. This novel configuration has played a very significant role in achieving multiple ultra-narrow resonant absorption peaks that produce very high sensitivity when employed as a refractive index sensor.

View Article and Find Full Text PDF

Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!