This study was conducted to understand the biological effects of microplastics (MPs), polystyrene microspheres (PSM), and polyethylene microparticles (PEM) in the juveniles of the giant river prawn, Macrobrachium rosenbergii. The PSM (0.5-1.0 µm) and PEM (30.0-150.0 µm) were separately incorporated into the artificial diets with concentrations of 1, 5, and 10 mg per 100 g. The prawns were fed with these diets for a period of 60 days. Compared with control, the following dose-dependent changes have been recorded in PSM and PEM incorporated feeds fed prawns: declines in the survival rate, length and weight gains; increase in activities of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione s-transferase, and glutathione peroxidase (GPx); elevated concentrations of reduced glutathione (GSH) and malondialdehyde; decreased activities of metabolic enzymes, such as glutamic oxaloacetic transaminase and glutamic pyruvic transaminase; higher total RNA in hepatopancreas (HP) of PSM fed prawns compared with that of PEM; higher total RNA in muscle (MU) of PEM-fed prawns compared with that of PSM; prominent cDNA bands in 150 bp regions; up-regulated heat shock protein (HSP70) gene in HP; down-regulation of HSP70 gene in MU of PSM-fed prawns only; down-regulated myostatin (MSTN) gene. These results suggest that these MPs have affected the survival and growth, activated the antioxidant defense, inhibit the metabolic enzymes, positively regulated the HSP70 gene, and negatively regulated the MSTN gene in M. rosenbergii. Therefore, exposures to PSM and PEM caused biological effects in this species of prawn.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-021-00833-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!