Artificial vascular treatment is an emerging interdisciplinary subject of medicine. Although the use of artificial vessels has led to many successful advancements, blood clotting remains a major challenge, especially in terms of mural clots created along the vessel wall that do not completely block the vessel. The main objective of this study is to present a method for declotting artificial vessels. This research introduces a novel thrombectomy technique in artificial vessels by employing nano-magnetic particles under a rotating magnetic field to remove mural clots in artificial vessels. A mathematical model describes the relationship between process parameters. In vitro tests confirm the feasibility of nano-magnetic thrombectomy in cleaning and declotting artificial vessels. The results show that the clot fragments are nano-sized, which eliminates the risk of distal emboli as a concern of using current atherectomy techniques. Meanwhile, no damage to the artificial vessels is observed. The results show that the frequency of rotating the magnetic field has the greatest effect on clot removal. The conceptual principles stated in this study also have the potential to be used in other vascular depositions, such as the accumulation of lipids, and calcification atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998024PMC
http://dx.doi.org/10.1038/s41598-021-86291-2DOI Listing

Publication Analysis

Top Keywords

artificial vessels
24
mural clots
8
declotting artificial
8
rotating magnetic
8
magnetic field
8
artificial
7
vessels
6
noninvasive thrombectomy
4
thrombectomy graft
4
graft nano-magnetic
4

Similar Publications

Coronary artery disease (CAD) remains the leading cause of death globally, highlighting the critical need for accurate diagnostic tools in medical imaging. Traditional segmentation methods for coronary angiograms often struggle with vessel discontinuity and inaccuracies, impeding effective diagnosis and treatment planning. To address these challenges, we developed the Local Adaptive Segmentation Framework (LASF), enhancing the YOLOv8 architecture with dilation and erosion algorithms to improve the continuity and precision of vascular image segmentation.

View Article and Find Full Text PDF

Purpose: In totally endoscopic off-pump left atrial appendage (LAA) closure and surgical ablation, securing the operative field is sometimes difficult in some patients because of a narrow working space caused by an elevated diaphragm or ventricles. In this study, we aimed to investigate the effectiveness of a method that facilitates securing the operative field using an artificial pneumothorax.

Methods: We analyzed 71 consecutive patients who underwent totally endoscopic off-pump LAA closure and bilateral pulmonary vein isolation.

View Article and Find Full Text PDF

Artificial intelligence for brain neuroanatomical segmentation in magnetic resonance imaging: A literature review.

J Clin Neurosci

January 2025

Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, NSW, Australia; Computational NeuroSurgery (CNS) Lab, Macquarie University, NSW, Australia.

Purpose: This literature review aims to synthesise current research on the application of artificial intelligence (AI) for the segmentation of brain neuroanatomical structures in magnetic resonance imaging (MRI).

Methods: A literature search was conducted using the databases Embase, Medline, Scopus, and Web of Science, and captured articles were assessed for inclusion in the review. Data extraction was performed for the summary of the AI model used, and key findings of each article, advantages and disadvantages were identified.

View Article and Find Full Text PDF

Objective: This study examined the relationship between diffusion tensor imaging indicators and brain network characteristics in patients with cerebral small vessel disease (CSVD) with (CSVD + S) and without (CSVD-S) sleep disturbance. We explored the feasibility of using these imaging biomarkers to investigate the pathophysiological mechanisms underlying sleep disturbance in patients with CSVD.

Methods: A total of 146 patients with CSVD and 84 healthy controls were included.

View Article and Find Full Text PDF

Objectives: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesised that in real world use where prevalence is low, its clinical utility may be overstated.

Methods: In this single centre retrospective service evaluation project, data sent to Brainomix from a medium size acute National Health Service (NHS) Trust hospital between 1/3/2022-1/3/2023 was reviewed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!