AI Article Synopsis

  • - Recurrent miscarriages affect about 5% of couples trying to conceive, and recent studies have examined the genetic links using advanced techniques like array comparative genomic hybridization (a-CGH) and whole exome sequencing (WES).
  • - In a study involving 1625 Iranian women, a-CGH revealed significant differences in genetic imbalances between related and unrelated couples, while WES identified genetic alterations in 65% of cases from 20 women with prior normal tests.
  • - The findings suggest that WES could pave the way for diagnosing lethal genetic disorders in consanguineous couples experiencing recurrent miscarriages, marking an important step in understanding and addressing this issue.

Article Abstract

Recurrent miscarriages occur in about 5% of couples trying to conceive. In the past decade, the products of miscarriage have been studied using array comparative genomic hybridization (a-CGH). Within the last decade, an association has been proposed between miscarriages and single or multigenic changes, introducing the possibility of detecting other underlying genetic factors by whole exome sequencing (WES). We performed a-CGH on the products of miscarriage from 1625 Iranian women in consanguineous or non-consanguineous marriages. WES was carried out on DNA extracted from the products of miscarriage from 20 Iranian women in consanguineous marriages and with earlier normal genetic testing. Using a-CGH, a statistically significant difference was detected between the frequency of imbalances in related vs. unrelated couples (P < 0.001). WES positively identified relevant alterations in 11 genes in 65% of cases. In 45% of cases, we were able to classify these variants as pathogenic or likely pathogenic, according to the American College of Medical Genetics and Genomics guidelines, while in the remainder, the variants were classified as of unknown significance. To the best of our knowledge, our study is the first to employ WES on the products of miscarriage in consanguineous families with recurrent miscarriages regardless of the presence of fetal abnormalities. We propose that WES can be helpful in making a diagnosis of lethal disorders in consanguineous couples after prior genetic testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997959PMC
http://dx.doi.org/10.1038/s41598-021-86309-9DOI Listing

Publication Analysis

Top Keywords

products miscarriage
16
exome sequencing
8
iranian women
8
women consanguineous
8
identifying recurrent
4
recurrent pregnancy
4
pregnancy loss
4
loss consanguineous
4
consanguineous couples
4
couples exome
4

Similar Publications

HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy.

Int Immunopharmacol

January 2025

Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China. Electronic address:

Background: The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA.

Methods: Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy.

View Article and Find Full Text PDF

Human papillomaviruses (HPVs) are responsible for the majority of sexually transmitted infections (STIs), some of which are oncogenic and can cause oropharyngeal or genital cancers. The HPV prevalence at the genital level varies according to the population studied but is higher in the seminal fluid of men suffering from idiopathic infertility than in the general population. The involvement of HPV in male infertility is supported by several studies suggesting that this virus can affect sperm quality by altering sperm DNA integrity, motility, number, viability, and morphology, and by inducing the production of anti-sperm antibodies (ASAs).

View Article and Find Full Text PDF

(1) Background: Fetal chromosomal examination is a critical component of modern prenatal testing. Traditionally, maternal serum biomarkers such as free β-human chorionic gonadotropin (Free β-HCG) and pregnancy-associated plasma protein A (PAPPA) have been employed for screening, achieving a detection rate of approximately 90% for fetuses with Down syndrome, albeit with a false positive rate of 5%. While amniocentesis remains the gold standard for the prenatal diagnosis of chromosomal abnormalities, including Down syndrome and Edwards syndrome, its invasive nature carries a significant risk of complications, such as infection, preterm labor, or miscarriage, occurring at a rate of 7 per 1000 procedures.

View Article and Find Full Text PDF

Spontaneous abortion, commonly known as miscarriage, is a significant concern during early pregnancy. Histopathological examination of tissue samples is a widely used method to diagnose and classify tissue phenotypes found in products of conception (POC) after spontaneous abortion. Histopathological examination is subjective and dependent on the skill and experience of the examiner.

View Article and Find Full Text PDF
Article Synopsis
  • - The dairy industry needs efficient reproduction for successful milk production, with spontaneous abortion (SA) affecting different rates between heifers bred by artificial insemination (4.5%) and those receiving embryo transfer (31.6%).
  • - A genome-wide association analysis (GWAA) identified 216 loci and 413 candidate genes linked to SA in artificially inseminated Holstein heifers, while no significant loci were found for embryo transfer recipients.
  • - The discovered genetic loci related to SA in AI heifers can potentially aid in decreasing fetal loss through genomic selection strategies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!