AI Article Synopsis

  • Chronic demyelination in the CNS leads to an inhibitory environment that hampers the recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), resulting in ineffective remyelination and axonal damage.
  • Through network-based transcriptomics, Sulfatase 2 (Sulf2) was identified as being present in activated human OPCs, where it influences the signaling environment by modifying heparan sulfate proteoglycans.
  • Increased levels of Sulf2 in demyelinating lesions of multiple sclerosis hinder the recruitment of OPCs and the formation of new oligodendrocytes, but inhibiting sulfatases like Sulf2 using drugs such as PI-88 can promote oligodendrocyte recruitment and enhance remyel

Article Abstract

Chronic demyelination in the human CNS is characterized by an inhibitory microenvironment that impairs recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) leading to failed remyelination and axonal atrophy. By network-based transcriptomics, we identified sulfatase 2 (Sulf2) mRNA in activated human primary OPCs. Sulf2, an extracellular endosulfatase, modulates the signaling microenvironment by editing the pattern of sulfation on heparan sulfate proteoglycans. We found that Sulf2 was increased in demyelinating lesions in multiple sclerosis and was actively secreted by human OPCs. In experimental demyelination, elevated OPC Sulf1/2 expression directly impaired progenitor recruitment and subsequent generation of oligodendrocytes thereby limiting remyelination. Sulf1/2 potentiates the inhibitory microenvironment by promoting BMP and WNT signaling in OPCs. Importantly, pharmacological sulfatase inhibition using PI-88 accelerated oligodendrocyte recruitment and remyelination by blocking OPC-expressed sulfatases. Our findings define an important inhibitory role of Sulf1/2 and highlight the potential for modulation of the heparanome in the treatment of chronic demyelinating disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998003PMC
http://dx.doi.org/10.1038/s41467-021-22263-4DOI Listing

Publication Analysis

Top Keywords

inhibitory microenvironment
12
oligodendrocyte progenitor
8
progenitor cells
8
experimental demyelination
8
overcoming inhibitory
4
microenvironment
4
microenvironment surrounding
4
surrounding oligodendrocyte
4
cells experimental
4
demyelination chronic
4

Similar Publications

Inhibition of TFAM-Mediated Mitophagy by Oroxylin A Restored Sorafenib Sensitivity Under Hypoxia Conditions in HepG2 Cells.

Pharmaceuticals (Basel)

December 2024

Jangsu Key Laboratory for Pharmacology and Safety Research of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Liver cancer treatment encounters considerable therapeutic challenges, especially because hypoxic microenvironments markedly reduce sensitivity to chemotherapeutic agents. TFAM (mitochondrial transcription factor A) plays a crucial role in maintaining mitochondrial function. Oroxylin A (OA), a flavonoid with potential therapeutic properties, demonstrated prospects in cancer treatment.

View Article and Find Full Text PDF

Super-enhancer-driven SLCO4A1-AS1 is a new biomarker and a promising therapeutic target in glioblastoma.

Sci Rep

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.

Glioblastoma (GBM) is the most common intracranial malignancy, but current treatment options are limited. Super-enhancers (SEs) have been found to drive the expression of key oncogenes in GBM. However, the role of SE-associated long non-coding RNAs (lncRNAs) in GBM remains poorly understood.

View Article and Find Full Text PDF

Peptide-based CAR-NK cells: A novel strategy for the treatment of solid tumors.

Biochem Pharmacol

January 2025

CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China. Electronic address:

CAR-T cell therapy has been proven to be effective on hematological tumors, although graft-versus-host disease and cytokine release syndrome(CRS) limit its application to a certain extent. However, CAR-T therapy for solid tumors met challenges, among which the lack of tumor-specific antigens (TSA) and immunosuppressive tumor microenvironment (TME) are the most important factors. CAR-NK could be a good alternative to CAR-T in some ways since they can induce mild CRS and are independent of HLA-matching, but the efficacy of CAR-NKs remains limited in solid tumors.

View Article and Find Full Text PDF
Article Synopsis
  • Uremic patients accumulate protein-bound uremic toxins (PBUTs), which alter drug metabolism by affecting the environment around liver cells and CYP450 enzymes.
  • The study found that specific PBUTs like indoxyl sulfate (IS) and hippurate (HA) significantly inhibit the metabolism of atorvastatin (ATV), with IS being the most impactful, reducing ATV metabolism by over 50%.
  • Results showed that the expression of the enzyme CYP3A4, critical for drug metabolism, was downregulated in the presence of uremic serum, leading to decreased ATV uptake and excretion due to effects on related signaling pathways.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!