Phyllotactic patterning of gerbera flower heads.

Proc Natl Acad Sci U S A

Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada

Published: March 2021

Phyllotaxis, the distribution of organs such as leaves and flowers on their support, is a key attribute of plant architecture. The geometric regularity of phyllotaxis has attracted multidisciplinary interest for centuries, resulting in an understanding of the patterns in the model plants and tomato down to the molecular level. Nevertheless, the iconic example of phyllotaxis, the arrangement of individual florets into spirals in the heads of the daisy family of plants (Asteraceae), has not been fully explained. We integrate experimental data and computational models to explain phyllotaxis in We show that phyllotactic patterning in gerbera is governed by changes in the size of the morphogenetically active zone coordinated with the growth of the head. The dynamics of these changes divides the patterning process into three phases: the development of an approximately circular pattern with a Fibonacci number of primordia near the head rim, its gradual transition to a zigzag pattern, and the development of a spiral pattern that fills the head on the template of this zigzag pattern. Fibonacci spiral numbers arise due to the intercalary insertion and lateral displacement of incipient primordia in the first phase. Our results demonstrate the essential role of the growth and active zone dynamics in the patterning of flower heads.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020676PMC
http://dx.doi.org/10.1073/pnas.2016304118DOI Listing

Publication Analysis

Top Keywords

phyllotactic patterning
8
patterning gerbera
8
flower heads
8
active zone
8
pattern fibonacci
8
zigzag pattern
8
gerbera flower
4
phyllotaxis
4
heads phyllotaxis
4
phyllotaxis distribution
4

Similar Publications

3D-Printed Self-Assembling Helical Models for Exploring Viral Capsid Structures.

Biomimetics (Basel)

December 2024

Departments of Biological Sciences and Mathematical Sciences, University of Delaware, Newark, DE 19716, USA.

This work presents a novel application of additive manufacturing in the design of self-assembling helical viral capsids using 3D-printed components. Expanding on prior work with 3D-printed self-assembling spherical capsids, we developed helical models that integrate geometric parameters and magnetic interactions to mimic key features of the assembly process of helical viral capsids. Using dual-helix phyllotactic patterns and simplified electrostatic simulations, these models consistently self-assemble into a cylinder, providing unique insights into the structural organization and stability of helical capsids.

View Article and Find Full Text PDF

Mechanical forces play a crucial role in plant development, including floral development. We previously reported that the phyllotactic variation in the staminate flowers of Ceratophyllum demersum may be caused by mechanical forces on the adaxial side of floral primordia, which may be a common mechanism in angiosperms. On the basis of this result, we developed a novel experimental system for analysis of the effects of mechanical forces on the floral meristem of Arabidopsis thaliana, aiming to induce morphological changes in flowers.

View Article and Find Full Text PDF

The hidden diversity of vascular patterns in flower heads.

New Phytol

July 2024

Department of Computer Science, University of Calgary, Calgary, AB, T2N 1N4, Canada.

Vascular systems are intimately related to the shape and spatial arrangement of the plant organs they support. We investigate the largely unexplored association between spiral phyllotaxis and the vascular system in Asteraceae flower heads. We imaged heads of eight species using synchrotron-based X-ray micro-computed tomography and applied original virtual reality and haptic software to explore head vasculature in three dimensions.

View Article and Find Full Text PDF

Development and evolution of the Asteraceae capitulum.

New Phytol

April 2024

Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland.

Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula.

View Article and Find Full Text PDF

A new mathematical model of phyllotaxis to solve the genuine puzzle spiromonostichy.

J Plant Res

January 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.

Arrangement of plant leaves around the stem, termed phyllotaxis, exhibits beautiful and mysterious regularities and has been one of the most attractive subjects of biological pattern formation. After the long history of studies on phyllotaxis, it is now widely accepted that the inhibitory effect of existing leaf primordia on new primordium formation determines phyllotactic patterning. However, costoid phyllotaxis unique to Costaceae of Zingiberales, displaying spiromonostichy characterized by a steep spiral with a small divergence angle, seems to disagree with the inhibitory effect-based mechanism and has remained as a "genuine puzzle".

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!