Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments. Retinal transcriptome profiling using RNA-Seq and quantification demonstrated the presence of lws and rh2 cone opsin genes and a highly expressed single rod (rh1) opsin gene. Spectral tuning analysis predicted these vitamin A1-based visual photopigments to exhibit spectral absorbance maxima at 461 nm (rh2), 496 nm (rh1) and 555 nm (lws); suggesting the presence of dichromacy in this species. Indeed, P. motoro demonstrates the potential to be equally sensitive to wavelengths from 380 to 600 nm of the visible spectrum. Behavioural results showed that red and green plates, as well as blue and yellow plates, were readily discriminated based on colour; however, brightness differences also played a part in the discrimination of blue and yellow. Red hues of different brightness were distinguished significantly above chance level from one another. In conclusion, the genetic and behavioural results support prior data on marine stingrays. However, this study suggests that freshwater stingrays of the family Potamotrygonidae may have a visual colour system that has ecologically adapted to a riverine habitat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.226142 | DOI Listing |
J Morphol
February 2023
Department of Biology, West Chester University, West Chester, Pennsylvania, USA.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.
View Article and Find Full Text PDFAnimals (Basel)
September 2021
Institute of Zoology, University of Bonn, Poppelsdorfer Schloss, Meckenheimerallee 169, 53115 Bonn, Germany.
Over the last decade, studies examining the cognitive abilities of fish have increased, using a broad range of approaches. One of the foci has been to test the ability of fish to discriminate quantities of items and to determine whether fish can solve tasks solely on the basis of numerical information. This study is the first to investigate this ability in two elasmobranch species.
View Article and Find Full Text PDFJ Fish Biol
November 2021
Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
Particle image velocimetry and video analysis were employed to determine the pectoral-fin mechanism used by the stingray Potamotrygon motoro to bury into sand. Rapid oscillations of the body and folding motions of the posterior portion of the pectoral fin suspended sediment beneath the pectoral disc and directed vortices of sediment onto the dorsal surface, where they dissipated and the sediment settled. Body coverage was increased by increased fin displacement and speed and also by the occasional collision of vortices that redirected sediment flow towards the head and tail.
View Article and Find Full Text PDFJ Exp Biol
May 2021
Institute of Zoology, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115 Bonn, Germany.
Previous studies have shown that marine stingrays have the anatomical and physiological basis for colour vision, with cone spectral sensitivity in the blue to green range of the visible spectrum. Behavioural studies on Glaucostegus typus also showed that blue and grey can be perceived and discriminated. The present study is the first to assess visual opsin genetics in the ocellate river stingray (Potamotrygon motoro) and test whether individuals perceive colour in two alternative forced choice experiments.
View Article and Find Full Text PDFFish Physiol Biochem
December 2020
Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
The importance of reactive oxygen species and the antioxidant system in sperm biology has been recognized for different bony fishes but nothing is known in this regard for chondrichthyans. For the first time for cartilaginous fishes, the enzymatic antioxidant system was shown herein to be present in both fractions of sperm (spermatozoa and seminal fluid) collected from two different places (seminal vesicle and cloaca). In internally fertilizing freshwater ocellate river stingray, Potamotrygon motoro, the activity of superoxide dismutase and glutathione peroxidase was not changed upon sperm transition from the seminal vesicle to the cloaca.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!