Active IFNγ signaling is a common feature of tumors responding to PD-1 checkpoint blockade. IFNγ exhibits both anti- and protumor activities. Here, we show that the treatment of lung adenocarcinoma cells with IFNγ led to a rapid increase of ZEB1 expression and a significant change in epithelial-to-mesenchymal transition (EMT)-associated gene expression pattern. Moreover, functional analyses show that IFNγ promoted cell migration and metastasis . We demonstrate that ZEB1 is required for IFNγ-promoted EMT, cell migration, and metastasis, as RNAi-mediated knockdown of ZEB1 abrogated EMT, cell migration, and metastasis induced by IFNγ. We show that IFNγ induced upregulation of JMJD3 significantly reduced H3K27 trimethylation in the promoter of the gene, which led to activation of gene transcription. IFNγ-induced JMJD3 expression was JAK1/2-STAT1 dependent. Inhibition of JMJD3 abrogated IFNγ-induced ZEB1 expression. IFNγ-induced ZEB1 also reduced expression. Downregulation of ZEB1 increased expression, which led to a reduction of PD-L1 expression induced by IFNγ. It is worth noting that knockdown of did not affect IFNγ-mediated antiproliferation and induction of CXCL9 and CXCL10. Thus, downregulation of ZEB1 may prevent the protumor activity of IFNγ while retaining its antitumor function. This study expands our understanding of IFNγ-mediated signaling and helps to identify therapeutic targets to improve current immunotherapies. IMPLICATIONS: IFNγ increases ZEB1 expression in a STAT1-JMJD3 dependent manner, and consequently promotes cancer cell aggressiveness. This study provides a potential target to minimize the procancer effect of IFNγ while preserving its antitumor function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-20-0948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!