Background: Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood.

Methods: The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance.

Results: Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish.

Conclusions: FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259645PMC
http://dx.doi.org/10.1681/ASN.2020081177DOI Listing

Publication Analysis

Top Keywords

transcriptional regulation
12
transcription factors
8
mature podocytes
8
human glomerulus
8
glomerulus cells
8
regulatory roles
8
animal models
8
foxc1/2
6
transcriptional
5
tfs
5

Similar Publications

ZNF169 promotes thyroid cancer progression via upregulating FBXW10.

Cell Div

January 2025

Department of Nuclear Medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South university/Hunan Cancer Hospital, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, P.R. China.

Background: Zinc finger protein 169 (ZNF169) plays a key role in cancer development. However, the specific role of ZNF169 in the tumorigenesis of thyroid carcinoma (THCA) remains poorly understood.

Methods: The expression of ZNF169 was measured using immunohistochemistry, RT-qPCR, and western blot.

View Article and Find Full Text PDF

Background: The photothermal sensitivity of tobacco refers to how tobacco plants respond to variations in the photothermal conditions of their growth environment. The degree of this sensitivity is crucial for determining the optimal planting regions for specific varieties, as well as for improving the quality and yield of tobacco leaves. However, the precise mechanisms underlying the development of photothermal sensitivity in tobacco remain unclear.

View Article and Find Full Text PDF

Background: Post-menopausal women experience more severe muscular fatty infiltration, though the mechanisms remain unclear. The decline in estrogen levels is considered as a critical physiological alteration during post-menopause. Fibro/adipogenic progenitors (FAPs) are identified as major contributors to muscular fatty infiltration.

View Article and Find Full Text PDF

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!