The key to the allergenicity of lipid transfer protein (LTP) ligands: A structural characterization.

Biochim Biophys Acta Mol Cell Biol Lipids

Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain. Electronic address:

Published: July 2021

Plant lipid transfer proteins are a large family that can be found in all land plants. They have a hydrophobic cavity that allows them to harbor lipids and facilitates their traffic between membranes. However, in humans, this plant protein family is responsible for the main food allergies in the Mediterranean area. Nevertheless, not only the protein itself but also its ligand is relevant for allergic sensitization. The main aim of the present work is to analyse the natural ligands carried by four allergenic LTPs (Tri a 14, Art v 3, Par j 2, and Ole e 7), compared with the previously identified ligand of Pru p 3 (CPT-PHS ligand), and clarify their role within the immunological reactions. Results showed that the ligands of the LTPs studied shared a chemical identity, in which the presence of a polar head was essential to the protein-ligand binding. This ligand was transported through a skin cellular model, and phosphorylated phytosphingosine could be detected as result of cell metabolism. Since sphingosine kinase 1 was overexpressed in keratinocytes incubated with the LTP-ligand complex, this enzyme might be responsible for the phosphorylation of the phytosphingosine fraction of the CPT-PHS ligand. This way, phytosphingosine-1-phosphate could be mimicking the role of the human inflammatory mediator sphingosine-1-phosphate, explaining why LTPs are associated with more severe allergic responses. In conclusion, this work contributes to the understanding of the chemical nature and behavior of lipid ligands carried by allergens, which would help to gain insight into their role during allergic sensitization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2021.158928DOI Listing

Publication Analysis

Top Keywords

lipid transfer
8
allergic sensitization
8
ligands carried
8
cpt-phs ligand
8
ligand
5
key allergenicity
4
allergenicity lipid
4
transfer protein
4
protein ltp
4
ligands
4

Similar Publications

High-density lipoprotein (HDL) is associated with decreased incidence of cardiovascular events, and its functionality also influences prognosis. Exercise is an important tool to improve prognosis in the post-infarction (MI) population, but the role of exercise on HDL functionality is poorly understood. Sixty-two patients with acute MI were randomized in a supervised exercise program for 12-14 weeks (exercise group-EG) or a control group (CG).

View Article and Find Full Text PDF

Theoretical Study of Antioxidant and Prooxidant Potency of Protocatechuic Aldehyde.

Int J Mol Sci

January 2025

Institute for Information Technologies Kragujevac, Department of Science, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac, Serbia.

In this study, the antioxidant and prooxidant potency of protocatechuic aldehyde (PCA) was evaluated using density functional theory (DFT). The potency of direct scavenging of hydroperoxyl (HOO) and lipid peroxyl radicals (modeled by vinyl peroxyl, HC=CHOO) involved in lipid peroxidation was estimated. The repair of oxidative damage in biomolecules (lipids, proteins and nucleic acids) and the prooxidant ability of PCA phenoxyl radicals were considered.

View Article and Find Full Text PDF

Exploring the Impact of Pharmaceutical Excipient PEG400 on the Pharmacokinetics of Mycophenolic Acid Through In Vitro and In Vivo Experiments.

Int J Mol Sci

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.

Mycophenolic acid (MPA) is a commonly used immunosuppressant. In the human body, MPA is metabolized into mycophenolic acid 7-O-glucuronide (MPAG) and mycophenolic acid acyl-glucuronide (AcMPAG) mainly through liver glucuronidation, which involves UDP-glucuronosyltransferase (UGTs) and transfer proteins. Research has indicated that the pharmaceutical excipient PEG400 can impact drug processes in the body, potentially affecting the pharmacokinetics of MPA.

View Article and Find Full Text PDF

The black garden ant () is a widely distributed species across Europe, North America, and North Africa, playing a pivotal role in ecological processes within its diverse habitats. However, the microbiome associated with remains poorly investigated. In the present study, we isolated a novel species, , from the soil of the anthill.

View Article and Find Full Text PDF

The calcium-dependent phospholipid scramblase TMEM16E mediates ion transport and lipid translocation across the plasma membrane. TMEM16E also contributes to protection of membrane structure by facilitating cellular repair signaling. Our research reveals that TMEM16E activation promotes macropinocytosis, essential for maintaining plasma membrane integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!