A New Chemical Probe Challenges the Broad Cancer Essentiality of CK2.

Trends Pharmacol Sci

Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK. Electronic address:

Published: May 2021

Casein kinase 2 (CK2) is highly expressed in cancer and has been considered a potential therapeutic target. Wells and colleagues developed and characterized the new CK2 inhibitor SGC-CK2-1. Unexpectedly, this potent and highly selective chemical probe does not show broad antiproliferative activity in cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tips.2021.02.002DOI Listing

Publication Analysis

Top Keywords

chemical probe
8
probe challenges
4
challenges broad
4
broad cancer
4
cancer essentiality
4
essentiality ck2
4
ck2 casein
4
casein kinase
4
kinase ck2
4
ck2 highly
4

Similar Publications

Renal-clearable probes for disease detection and monitoring.

Trends Biotechnol

December 2024

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, València, Spain; Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n 46022, Valencia, Spain; CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Avenida Eduardo Primo Yúfera, 3, 46012, Valencia, Spain; Unidad Mixta de Investigación en Nanomedicina y Sensores, Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe (IISLAFE), Avenida Fernando Abril Martorell, 106, 46026, Valencia, Spain.

The demand for novel, minimally invasive, cost-effective, and easily readable diagnostic tools, primarily designed for the longitudinal monitoring of diseases and their treatments, has promoted the development of diagnostic systems that selectively target cells, tissues, or organs, at the same time minimizing their nonspecific accumulation, thus reducing the risk of toxicity and side effects. In this review, we explore the development of renal-clearable systems in non-invasive or minimally invasive detection protocols, all with the objective of minimizing nonspecific accumulation and its associated toxicity effects through quick renal excretion. These probes can identify molecules of interest or different healthy states of the patients through the direct analysis of urine (urinalysis).

View Article and Find Full Text PDF

Chemical probes for imaging cellular compartmentalization.

Trends Biochem Sci

December 2024

Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany. Electronic address:

View Article and Find Full Text PDF

Phenomics-based Discovery of Novel Orthosteric Choline Kinase Inhibitors.

Angew Chem Int Ed Engl

December 2024

University of Oxford, Nuffield Department of Medicine, Centre for Medicines Discovery, NDM Research Building, Roosevelt Drive, OX3 7FZ, Oxford, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Choline kinase alpha (CHKA) is a central mediator of cell metabolism linked to cancer and immune regulation. Cellular and clinical evaluation of CHKA has been hampered by challenges in the development of drug-like choline kinase inhibitors. Here, we identify CHKA as an unexpected off-target of histone methyltransferase inhibitors using an integrated phenomic approach.

View Article and Find Full Text PDF

A bifunctional coumarin-based CD probe for chiral analysis of amino acids in aqueous solution.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States. Electronic address:

Amino acids play important roles in human pathology and physiology and the qualitative and quantitative determination of chiral amino acids in humans and mammals also has important impacts on the life sciences. Therefore, the introduction of artificial probes to assess the concentrations and enantiomeric compositions [ee = ([D] - [L])/([D] + [L])] of amino acids in aqueous solution is necessary in understanding certain biological processes and diagnosing and treating diseases. Herein, a bifunctional achiral coumarin probe (Br-Coumarin) is reported to determine the absolute configuration, ee value, and concentration of 16 amino acids in THF/HO = 1/4 solution at micromolar concentrations.

View Article and Find Full Text PDF

Near-infrared fluorescence imaging platform with ultra large Stokes shift for monitoring and bioimaging of hydrogen peroxide in the process of ferroptosis.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Hydrogen peroxide (HO), as a strong oxidant, is crucial for the aerobic metabolism of organisms and is intricately linked to the onset of numerous diseases. Real-time monitor HO levels in the environment and biological microenvironment is of paramount importance for environment protection and elucidating HO-related physiological and pathological processes. In this study, a novel near-infrared fluorescence imaging platform was developed and a near-infrared fluorescent probe FBMH was constructed based on the platform with photoinduced electron transfer mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!