Background: Heterotopic ossification (HO) is noted most frequently in periarticular muscles and has not yet been reported in the cruciate ligaments of the knee. We present a rare case of symptomatic ossification of the posterior cruciate ligament (PCL).
Case Presentation: A 59-year-old woman had a 2-year history of knee pain that was getting worse during knee motion and had restricted knee motion for 1 year. X-rays could not show the lesion clearly. Multi-planar computed tomography demonstrated ossification within the PCL with mild osteoarthritic changes and excluded any other intra-articular pathology. The patient underwent arthroscopic debridement and then experienced immediate relief of pain and complete recovery of range of motion.
Conclusion: This is the first report of HO in the PCL as a possible cause of knee pain and restricted knee motion. On the basis of literature review, this case elaborates the difference between HO and calcification in the ligaments, the related factors inducing HO and the undefined pathogenesis, and favorable prognosis after adequate treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7995791 | PMC |
http://dx.doi.org/10.1186/s12891-021-04176-x | DOI Listing |
Sci Rep
January 2025
Department of Exercise Science, Syracuse University, 150 Crouse Dr, Syracuse, NY, 13244, USA.
Analyzing video footage of falls in older adults has emerged as an alternative to traditional lab studies. However, this approach is limited by the labor-intensive process of manually labeling body parts. To address this limitation, we aimed to validate the use of the AI-based pose estimation algorithm (OpenPose) in assessing the hip impact velocity and acceleration of video-captured falls.
View Article and Find Full Text PDFGait Posture
December 2024
Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
Background: Carbon fiber custom dynamic orthoses have been used to improve gait mechanics after lower limb trauma in military service members, with the goal of restoring function and improving outcomes. However, the effects of commercially available carbon fiber orthoses available to civilians on lower extremity joint kinetics and kinematics are poorly understood.
Research Question: The aim of this study was to examine the effect of two commercially available orthoses on lower extremity kinematics and kinetics in individuals with lower limb trauma.
J Neural Eng
January 2025
Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio, 44106-7078, UNITED STATES.
Objective: High-density nerve cuffs have been successfully utilized to restore somatosensation in individuals with lower-limb loss by interfacing directly with the peripheral nervous system. Elicited sensations via these devices have improved various functional outcomes, including standing balance, walking symmetry, and navigating complex terrains. Deploying neural interfaces in the lower limbs of individuals with limb loss presents unique challenges, particularly due to repetitive muscle contractions and the natural range of motion in the knee and hip joints for transtibial and transfemoral amputees, respectively.
View Article and Find Full Text PDFPLoS One
January 2025
Falls, Balance and Injury Research Centre, Neuroscience Research Australia, Sydney, Australia.
Background: Treadmill belt perturbations have high clinical feasibility for use in perturbation-based training in older people, but their kinematic validity is unclear. This study examined the kinematic validity of treadmill belt accelerations as a surrogate for overground walkway trips during gait in older people.
Methods: Thirty-eight community-dwelling older people were exposed to two unilateral belt accelerations (8 m s-2) whilst walking on a split-belt treadmill and two trips induced by a 14 cm trip-board whilst walking on a walkway with condition presentation randomised.
Biol Open
December 2024
Department of Kinesiology, Hungarian University of Sports Sciences, Alkotás utca 44-48, Budapest 1123, Hungary.
Knee joint position influences ankle torque, but it is unclear whether the soleus compensates to counteract the reductions in gastrocnemius output during knee-flexed versus knee-extended plantarflexions. Therefore, the purpose of this study was to determine the effects of knee joint position and plantarflexion contraction velocity on ankle plantarflexion torque and electromyography activity of the medial gastrocnemius and soleus in healthy young adults. Healthy male participants (n=30) performed concentric plantar flexions in a custom-built dynamometer from 15° dorsiflexion to 30° plantarflexion at gradually increasing velocities during each contraction at 30, 60, 120, 180, and 210° s-1 in a supine position with the knee fully extended and while kneeling with the knee fixed in 90° flexion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!