Low-loss depressed cladding waveguide architecture is highly attractive for improving the laser performance of waveguide lasers. We report on the design and fabrication of the "ear-like" waveguide structures formed by a set of parallel tracks in neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal via femtosecond laser writing. The obtained "ear-like" waveguides are with more symmetric mode profiles and lower losses by systematically comparing the guiding properties of two kinds of normal cladding waveguide. Efficient waveguide lasers are realized based on the designed structure in both continuous wave and pulsed regimes. Combined the high-gain from cladding waveguide and special "ear-like" structure, a passively fundamentally Q-switched laser with the narrow pulse width and the high repetition rate has been obtained by using tin diselenide (SnSe) as saturable absorber.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.417815DOI Listing

Publication Analysis

Top Keywords

cladding waveguide
12
femtosecond laser
8
depressed cladding
8
waveguide lasers
8
waveguide
6
laser direct
4
direct writing
4
writing depressed
4
cladding
4
cladding waveguides
4

Similar Publications

This Letter discusses the limitations of immersion-free recording schemes for holographic waveguide displays. Traditional holographic recording of waveguides requires recording angles exceeding the critical angle of the hologram-cladding interface. Achieving these angles necessitates edge-lit exposure using prisms and immersion liquids, which are challenging for roll-to-roll mass production and hinder widespread adoption.

View Article and Find Full Text PDF

We present both experimental and simulation results for a fully etched, C-band GC fabricated in an 800 nm silicon nitride platform that significantly reduces backreflections. They are minimized by truncating the initial grates, which deflect reflected light at an oblique angle and excite higher-order modes in the tapered waveguide that is filtered out. Insertion losses resulting from this modification of the grating coupler are mitigated by an adaptive redesign of the grates that corrects incurred errors in the generated phase front.

View Article and Find Full Text PDF

Coexistence of the Radial-Guided Mode and WGM in Azimuthal-Grating-Integrated Microring Lasers.

ACS Photonics

December 2024

Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.

Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.

View Article and Find Full Text PDF

We report on the operation of an efficient Tm,Ho:YLF depressed cladding, channeled waveguide laser in both continuous-wave (CW) and passively Q-switched (PQS) regimes, producing laser emission at the wavelength of 2.05 µm. The 70-µm diameter depressed cladding waveguide, fabricated using femtosecond laser inscription, had a low propagation loss value of 0.

View Article and Find Full Text PDF
Article Synopsis
  • * This study presents a germanium-on-zinc selenide (GOZ) platform that bonds high-quality thin-film germanium to a ZnSe substrate, achieving transparency from 2 µm to 14 µm with minimal optical losses.
  • * The GOZ platform could significantly reduce material loss issues in photonics, paving the way for advancements in quantum and nonlinear photonics technology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!