Invisibility cloaking devices constitute a unique and potentially disruptive technology, but only if they can work over broad bandwidths for electrically-large objects. So far, the only known scheme that allows for broadband scattering cancellation from an electrically-large object is based on an active implementation where electric and magnetic sources are deployed over a surface surrounding the object, but whose 'switching on' and other characteristics need to be known (determined) a priori, before the incident wave hits the surface. However, until now, the performance (and potentially surprising) characteristics of these devices have not been thoroughly analysed computationally, ideally directly in the time domain, owing mainly to numerical accuracy issues and the computational overhead associated with simulations of electrically-large objects. Here, on the basis of a finite-difference time-domain (FDTD) method that is combined with a perfect (for FDTD's discretized space) implementation of the total-field/scattered-field (TFSF) interface, we present detailed, time- and frequency-domain analyses of the performance and characteristics of active cloaking devices. The proposed technique guarantees the isolation between scattered- and total-field regions at the numerical noise level (around -300 dB), thereby also allowing for accurate evaluations of the scattering levels from imperfect (non-ideal) active cloaks. Our results reveal several key features, not pointed out previously, such as the suppression of scattering at certain frequencies even for imperfect (time-delayed) sources on the surface of the active cloak, the broadband suppression of back-scattering even for imperfect sources and insufficiently long predetermination times, but also the sensitivity of the scheme on the accurate switching on of the active sources and on the predetermination times if broadband scattering suppression from all angles is required for the electrically-large object.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.413043 | DOI Listing |
Invisibility cloaking devices constitute a unique and potentially disruptive technology, but only if they can work over broad bandwidths for electrically-large objects. So far, the only known scheme that allows for broadband scattering cancellation from an electrically-large object is based on an active implementation where electric and magnetic sources are deployed over a surface surrounding the object, but whose 'switching on' and other characteristics need to be known (determined) a priori, before the incident wave hits the surface. However, until now, the performance (and potentially surprising) characteristics of these devices have not been thoroughly analysed computationally, ideally directly in the time domain, owing mainly to numerical accuracy issues and the computational overhead associated with simulations of electrically-large objects.
View Article and Find Full Text PDFThe concept of perfect invisibility in free space implies an object neither reflects nor refracts optical waves coming from arbitrary directions, regardless of its shape and size. An optimal solution to realize such a peculiar phenomenon is to tune the constitutive parameters of the object to be identical to air. In particular, to render zero extinction from an existing object by covering some additional structures, is of importance for practical implementations, which is challenging.
View Article and Find Full Text PDFThrough aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency.
View Article and Find Full Text PDFSci Rep
February 2017
Center for Metamaterials and Integrated Plasmonics. Duke University, Box 90291, Durham, NC 27708, USA.
We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.
View Article and Find Full Text PDFMie theory and genetic algorithms are used to determine the parameters and performance of cloaks made of homogeneous isotropic metamaterials that would hide a spherical dielectric object of size comparable to the incident radiation wavelength. A single-layer (SL) cover with negative permittivity and permeability can produce a much greater reduction in the extinction efficiency than one with the permittivity and permeability of positive or opposite signs. Minimization of the extinction efficiency in the former case leads to both nonresonant and resonant solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!