Soil erodibility is an indispensable parameter for predicting soil erosion and evaluating the benefits of soil and water conservation. Slope situation can alter revegetation and its effects on soil properties and root traits, and thus may affect soil erodibility. However, whether slope situation will change the effect of revegetation on soil erodibility through improving soil properties and root traits has rarely been evaluated. Therefore, this study was conducted to detect the response of soil erodibility to slope situations (loess-tableland, hill-slope and gully-slope) in a typical watershed of the Loess Plateau. Five soil erodibility parameters (saturated soil hydraulic conductivity, SHC; mean weight diameter of aggregates, MWD; clay ratio, CR; soil disintegration rate, SDR; soil erodibility factor, K) and a comprehensive soil erodibility index (CSEI) are selected to clarify the study targets. The results revealed that soil properties, root traits, soil erodibility parameters and CSEI were affected by slope situation significantly. Soil and root can explain 79.7%, 79.1% and 69.8% of total variance in soil erodibility of loess-tableland, hill-slope and gully-slope, respectively. Slope situation influenced soil erodibility by changing the effects of revegetation on soil properties and root traits. Evidently, the slope situation greatly changed the relations between CSEI and soil and root parameters, whereafter a model considering slope situation (slope steepness), sand, organic matter content and root surface area density was reliable to estimate soil erodibility (CSEI). Our study suggested that the Armeniaca sibirica, the combination of Bothriochloa ischcemum and Robinia pseudoacacia and the combination of Armeniaca sibirica and Lespedeza bicolor can be used as the optimal selection for mitigating soil erodibility of loess-tableland, hill-slope and gully-slope, respectively. This study is of great significance in optimizing the spatial layout of soil and water conservation measures for different slope situations of the Loess Plateau.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.145540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!