A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced biostimulation coupled with a dynamic groundwater recirculation system for Cr(VI) removal from groundwater: A field-scale study. | LitMetric

AI Article Synopsis

  • There is a significant challenge in applying lab-developed bioremediation methods effectively at real-world sites contaminated with chromium (Cr), creating a gap in practical usage.
  • This study focused on enhancing in situ bioremediation of Cr(VI) by using ethanol and a dynamic groundwater recirculation (DGR) system, successfully lowering Cr(VI) levels from 1000-2000 mg/L to below the safe limit of 0.1 mg/L in just 52 days.
  • The introduction of ethanol significantly stimulated diverse bacteria that help reduce Cr(VI), while also showing competitive growth patterns among specific bacteria types, which influenced both the microbial community and the bioremediation process.

Article Abstract

A large gap exists between laboratory findings and successful implementation of bioremediation technologies for the treatment of chromium (Cr)-contaminated sites. This work conducted the enhanced bioremediation of Cr(VI) in situ via the addition of organic carbon (ethanol) coupled with a dynamic groundwater recirculation (DGR)-based system in a field-scale study. The DGR system was applied to successfully (1) remove Cr(VI) from groundwater via enhanced flushing by the recirculation system and (2) deliver the biostimulant to the heterogeneous subsurface environment, including a sand/cobble aquifer and a fractured bedrock aquifer. The results showed that the combined extraction and bioreduction of Cr(VI) were able to reduce Cr(VI) concentrations from 1000 to 2000 mg/L to below the clean-up goal of 0.1 mg/L within the operation period of 52 days. The effectiveness of Cr(VI) bioremediation and the relationship between microbial communities and geochemical parameters were evaluated. Multiple-line of evidence demonstrated that the introduction of ethanol significantly stimulated a variety of bacteria, including those responsible for denitrification, sulfate reduction and reduction of Cr(VI), which contributed to the establishment of reducing conditions in both aquifers. Cr(VI) was removed from groundwater via combined mechanisms of physical removal through the DGR system and the bioreduction of Cr(VI) followed by precipitation. In particular, it was found competitive growth among Cr(VI)-reducing bacteria (such as the enrichment of Geobacter, along with the reduced relative abundance of Acinetobacter and Pseudomonas) was induced by ethanol injection. Furthermore, Cr(VI), total organic carbon, NO, and SO played important roles in shaping the composition of the microbial community and its functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.145495DOI Listing

Publication Analysis

Top Keywords

crvi
10
coupled dynamic
8
dynamic groundwater
8
groundwater recirculation
8
recirculation system
8
field-scale study
8
organic carbon
8
dgr system
8
bioreduction crvi
8
groundwater
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!