Catalytic Reductive Cross-Coupling between Aromatic Aldehydes and Arylnitriles.

Chemistry

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.

Published: April 2021

AI Article Synopsis

  • A new method for creating α-hydroxy ketones is introduced, which involves a cross-coupling reaction between aromatic aldehydes and arylnitriles.
  • This reaction uses a copper catalyst and silylboronate as a reducing agent, showcasing a unique approach to chemoselectivity.
  • The technique represents a novel way of accomplishing electrophile-electrophile cross-coupling in organic synthesis.

Article Abstract

A reductive cross-coupling reaction between aromatic aldehydes and arylnitriles using a copper catalyst and a silylboronate as a reductant is reported. This protocol represents an unprecedented approach to the chemoselective synthesis of α-hydroxy ketones by electrophile-electrophile cross-coupling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202100763DOI Listing

Publication Analysis

Top Keywords

reductive cross-coupling
8
aromatic aldehydes
8
aldehydes arylnitriles
8
catalytic reductive
4
cross-coupling aromatic
4
arylnitriles reductive
4
cross-coupling reaction
4
reaction aromatic
4
arylnitriles copper
4
copper catalyst
4

Similar Publications

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Exploring nickel-catalyzed organochalcogen synthesis cross-coupling of benzonitrile and alkyl chalcogenols with computational tools.

Org Biomol Chem

January 2025

Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.

The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species.

View Article and Find Full Text PDF

High-throughput chemistry (HTC) and direct-to-biology (D2B) platforms allow for plate-based compound synthesis and biological evaluation of crude mixtures in cellular assays. The rise of these workflows has rapidly accelerated drug-discovery programs in the field of targeted protein degradation (TPD) in recent years by removing a key bottleneck of compound purification. However, the number of chemical transformations amenable to this methodology remain minimal, leading to limitations in the exploration of chemical space using existing library-based approaches.

View Article and Find Full Text PDF

Nickel-catalyzed cross-electrophile coupling (XEC) reactions of (hetero)aryl electrophiles represent appealing alternatives to palladium-catalyzed methods for biaryl synthesis, but they often generate significant quantities of homocoupling and/or proto-dehalogenation side products. In this study, an informer library of heteroaryl chloride and aryl bromide coupling partners is used to identify Ni-catalyzed XEC conditions that access high selectivity for the cross-product when using equimolar quantities of the two substrates. Two different catalyst systems are identified that show complementary scope and broad functional-group tolerance, and time-course data suggest that the two methods follow different mechanisms.

View Article and Find Full Text PDF

Single-Atom Based Metal-Organic Frameworks for Efficient C-S Cross-Coupling.

Chem Asian J

December 2024

Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.

Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (SAC) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 (Universitetet i Oslo) framework, synthesized via a straightforward solution impregnation method (denoted as UiO-66/Ni now onwards).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!