The German Research Network on Neuropathic Pain (DFNS) quantitative sensory testing (QST) method for sensory phenotyping is used to stratify patients by mechanism-associated sensory phenotype, theorised to be predictive of intervention efficacy. We hypothesised that change in pain and sensory dysfunction would relate to change in sensory phenotype. We investigated the responsiveness of sensory phenotype to surgery in patients with an entrapment neuropathy. With ethical approval and consent, this observational study recruited patients with neurophysiologically confirmed carpal tunnel syndrome. Symptom and pain severity parameters and DFNS QST were evaluated before and after carpal tunnel surgery. Surgical outcome was evaluated by patient-rated change. Symptom severity score of the Boston Carpal Tunnel Questionnaire and associated pain and paraesthesia subgroups were comparators for clinically relevant change. Quantitative sensory testing results (n = 76) were compared with healthy controls (n = 54). At 6 months postsurgery, 92% participants reported a good surgical outcome and large decrease in pain and symptom severity (P < 0.001). Change in QST parameters occurred for thermal detection, thermal pain, and mechanical detection thresholds with a moderate to large effect size. Change in mechanical pain measures was not statistically significant. Change occurred in sensory phenotype postsurgery (P < 0.001); sensory phenotype was associated with symptom subgroup (P = 0.03) and patient-rated surgical outcome (P = 0.02). Quantitative sensory testing-derived sensory phenotype is sensitive to clinically important change. In an entrapment neuropathy model, sensory phenotype was associated with patient-reported symptoms and demonstrated statistically significant, clinically relevant change after disease-modifying intervention. Sensory phenotype was independent of disease severity and may reflect underlying neuropathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000002277DOI Listing

Publication Analysis

Top Keywords

sensory phenotype
36
quantitative sensory
16
sensory
15
entrapment neuropathy
12
carpal tunnel
12
surgical outcome
12
phenotype
9
change
9
sensory testing-derived
8
testing-derived sensory
8

Similar Publications

Slower swimming promotes chemotactic encounters between bacteria and small phytoplankton.

Proc Natl Acad Sci U S A

January 2025

Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich 8093, Switzerland.

Chemotaxis enables marine bacteria to increase encounters with phytoplankton cells by reducing their search times, provided that bacteria detect noisy chemical gradients around phytoplankton. Gradient detection depends on bacterial phenotypes and phytoplankton size: large phytoplankton produce spatially extended but shallow gradients, whereas small phytoplankton produce steeper but spatially more confined gradients. To date, it has remained unclear how phytoplankton size and bacterial swimming speed affect bacteria's gradient detection ability and search times for phytoplankton.

View Article and Find Full Text PDF

Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.

View Article and Find Full Text PDF

Role of M1/M2 macrophages in pain modulation.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

July 2024

Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008.

Pain is a signal of inflammation that can have both protective and pathogenic effects. Macrophages, significant components of the immune system, play crucial roles in the occurrence and development of pain, particularly in neuroimmune communication. Macrophages exhibit plasticity and heterogeneity, adopting either pro-inflammatory M1 or anti-inflammatory M2 phenotypes depending on their functional orientation.

View Article and Find Full Text PDF

The trait-specific timing of accelerated genomic change in the human lineage.

Cell Genom

January 2025

Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Department of Statistics and Data Science, The University of Texas at Austin, Austin, TX, USA. Electronic address:

Humans exhibit distinct characteristics compared to our primate and ancient hominin ancestors. To investigate genomic bursts in the evolution of these traits, we use two complementary approaches to examine enrichment among genome-wide association study loci spanning diseases and AI-based image-derived brain, heart, and skeletal tissue phenotypes with genomic regions reflecting four evolutionary divergence points. These regions cover epigenetic differences among humans and rhesus macaques, human accelerated regions (HARs), ancient selective sweeps, and Neanderthal-introgressed alleles.

View Article and Find Full Text PDF

Parental experiences can alter offspring phenotypes via transgenerational plasticity (TGP), which may prime offspring to adaptively respond to novel stressors, including novel predators. However, we know little about the types of sensory cues (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!