Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/10738584211001753 | DOI Listing |
Dent Mater
January 2025
Department of Oral Health Sciences, Faculty of Dentistry, The University of British Columbia, 2199 Wesbrook Mall, room 352, BC V6T-1Z3, Canada. Electronic address:
Objectives: This study aimed to assess the potential of experimental dental resins containing ZnO nanoparticles (ZnO-NPs) for antimicrobial photodynamic therapy (aPDT) as a functional tool for the modulation of cariogenic biofilm in long-term.
Methods: Minimum inhibitory and bactericidal concentrations (MIC/MBC) of ZnO-NPs against Streptococcus mutans were initially determined under different energy densities of blue LED irradiation (0.00, 1.
Exp Cell Res
January 2025
Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.
View Article and Find Full Text PDFClin Biochem
January 2025
Health Department, El Colegio de la Frontera Sur, Carretera a Reforma Km. 15.5 s/n Ra, Guineo 2da. Sección, Villahermosa, Tabasco 86280, Mexico. Electronic address:
Introduction: Dyslipidemia is characterized by changes in lipid and lipoprotein levels in the blood where phospholipid transfer protein (PLTP) helps to regulate and modulate the size of high-density lipoproteins (HDL), working on the reverse transport of cholesterol. ApoA-1 is the primary protein component of HDL, and certain genetic variants like rs5072, have been associated with hypertriglyceridemia in children. This study aimed to explore the association between PLTP concentrations and the effect of the genetic variant APOA1 rs5072 on hypertriglyceridemia and atherogenic dyslipidemia (AD) in the pediatric population of Southeastern Mexico.
View Article and Find Full Text PDFGene
January 2025
Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Non-resolving Inflammation and Cancer, Changsha, China. Electronic address:
Background: Lactylation plays an important role in tumor progression. This study aimed to clarify the impact of lactylation on cancer-associated fibroblasts(CAFs).
Methods: Single-cell and bulk RNA sequence data, along with survival information, were obtained from TCGA and GEO datasets.
Cell Signal
January 2025
Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:
Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!