Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights.

Chem Res Toxicol

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.

Published: April 2021

Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrestox.0c00483DOI Listing

Publication Analysis

Top Keywords

mechanism-based inactivation
8
p450 enzymes
8
highly reactive
8
reactive intermediate
8
thiophene furan
8
furan alkylamines
8
inactivation cytochrome
4
cytochrome p450
4
enzymes computational
4
computational insights
4

Similar Publications

C2230, a preferential use- and state-dependent CaV2.2 channel blocker, mitigates pain behaviors across multiple pain models.

J Clin Invest

December 2024

Department of Pharmacology and Therapeutics, College of Pharmacy, University of Florida, Gainesville, United States of America.

Article Synopsis
  • - Antagonists like Ziconotide and Gabapentin target CaV2.2 calcium channels to relieve chronic pain, but their clinical use is limited due to issues like narrow therapeutic windows and potential for misuse or side effects.
  • - A new compound called C2230 has been identified as a blocker of CaV2.2 channels, showing multiple beneficial effects such as trapping the channel in an inactivated state and specifically targeting pain without affecting other ion channels or motor functions.
  • - C2230 effectively reduced pain-like behaviors in various animal models and human neurons, suggesting it could be developed as a new analgesic with a unique binding mechanism that differentiates it from existing treatments.
View Article and Find Full Text PDF

Berberrubine (BRB), belonging to the benzylisoquinoline alkaloid, is a main metabolite of berberine . BRB was previously proven to undergo metabolic activation mediated by P450s. In this study, the chemical interactions between BRB and CYP2D6 enzyme were investigated.

View Article and Find Full Text PDF

The rapid emergence of drug-resistant fungal strains necessitates the development of novel therapeutic approaches for battling biofilm-related infections. Biofilms, efflux pumps, and suppression of virulence traits in pathogenic yeasts are governed by epigenetic enzymes, namely, histone acetyltransferases (HATs) and histone deacetylases (HDACs). The review article is focused on the use of histone acetyltransferase inhibitors (HATi), a mechanism-based epidrug that inactivates the regular function of HATs.

View Article and Find Full Text PDF

Mechanism-based inactivators of sirtuin 5: A focused structure-activity relationship study.

Bioorg Med Chem Lett

January 2025

Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark. Electronic address:

Sirtuin 5 (SIRT5) is a lysine deacylase enzyme that cleaves negatively charged ε-N-acyllysine posttranslational modifications, arising from short dicarboxylic acids. Inhibition of SIRT5 has been suggested as a target for treatment of leukemia and breast cancer. In this work, we performed a focused structure-activity relationship study that identified highly potent inhibitors of SIRT5.

View Article and Find Full Text PDF

Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mis-predicted (i.e. false positives) the interaction that is observed in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!