High-Performance and Reliable Silver Nanotube Networks for Efficient and Large-Scale Transparent Electromagnetic Interference Shielding.

ACS Appl Mater Interfaces

Department of Material Science and Engineering, Frederick Seitz Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Published: April 2021

The development of flexible and transparent electromagnetic interference (EMI) shielding materials with excellent comprehensive properties is urgently demanded as visual windows and display devices in aeronautic, industry, medical, and research facilities. However, the method of how to obtain highly efficient and reliable transparent EMI shielding devices is still facing lots of obstacles. Here, a high-performance silver nanotube (AgNT) network with stable and integrated interconnects is prepared by physical depositing technology, based on a uniform and large-scale nanofiber skeleton. This unique structure enables the AgNT network to achieve one order higher conductivity (∼1.0 Ω/sq at >90% transmittance) than previous research studies and keeps <10% variation with random deformations (>5000 times). Moreover, the manufactured AgNT shielding film with a thickness of less than 1 mm can be easily transferred to arbitrary surfaces as a transparent and flexible EMI shielding film at commercial ∼35 dB EMI shielding effectiveness, with large-scale, low-cost, and simple preparation processes. These excellent properties endow the AgNT shielding film to achieve great potential for future flexible and transparent scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c00590DOI Listing

Publication Analysis

Top Keywords

emi shielding
16
shielding film
12
silver nanotube
8
transparent electromagnetic
8
electromagnetic interference
8
flexible transparent
8
agnt network
8
agnt shielding
8
shielding
7
transparent
5

Similar Publications

Modulating Interface of Ni-Embedded Hollow Porous TiCT MXene Film Toward Efficient EMI Shielding.

Small

January 2025

NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, Renewable Energy and Chemical Transformation Cluster, The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL, 32826, USA.

Since the explosive growth of state-of-the-art electronics and devices raises concerns about electromagnetic pollution, exploring novel and efficient electromagnetic interference (EMI) shielding materials is desirable and crucial. TiCT MXenes hold significant EMI shielding potential due to their inherent characteristics, including lightweight, metal-like conductivities, unique layered structure, and facile processing. Nonetheless, it remains challenging to fabricate TiCT MXenes-based EMI shielding materials with efficient shielding capability and low reflection.

View Article and Find Full Text PDF

This paper introduces an analytical method for studying power transmission through an infinite array of helical-shaped metal particles in a lossy dielectric medium. While the assessment of composite slabs' transmitted power has been extensively researched in the electromagnetic interference (EMI) shielding field, many studies lack an adequate problem description. The primary inadequacy of these studies is the need for an analytical framework.

View Article and Find Full Text PDF

MXene is widely used in the electromagnetic interference (EMI) shielding field. However, the high electromagnetic reflectivity of pure MXene causes potential secondary EMI pollution. This study presents a hollow egg-box structure used in MXene composite film, by which the reflectivity (R) could decrease from 0.

View Article and Find Full Text PDF

Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability.

View Article and Find Full Text PDF

Regulable crack patterns for the fabrication of high-performance transparent EMI shielding windows.

iScience

January 2025

State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS), Xi'an, Shaanxi 710119, China.

Crack pattern-based metal grid film is an ideal candidate material for transparent electromagnetic interference shielding optical windows. However, achieving crack patterns with narrow grid spacing, small wire width, and high connectivity remains challenging. Herein, an aqueous acrylic colloidal dispersion was developed as a crack precursor for preparing crack patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!