In degraded landscapes, recolonization by pioneer vegetation is often halted by the presence of persistent environmental stress. When natural expansion does occur, it is commonly due to the momentary alleviation of a key environmental variable previously limiting new growth. Thus, studying the circumstances in which expansion occurs can inspire new restoration techniques, wherein vegetation establishment is provoked by emulating natural events through artificial means. Using the salt-marsh pioneer zone on tidal flats as a biogeomorphic model system, we explore how locally raised sediment bed forms, which are the result of natural (bio)geomorphic processes, enhance seedling establishment in an observational study. We then conduct a manipulative experiment designed to emulate these facilitative conditions in order to enable establishment on an uncolonized tidal flat. Here, we attempt to generate raised growth-promoting sediment bed forms using porous artificial structures. Flume experiments demonstrate how these structures produce a sheltered hydrodynamic environment in which suspended sediment and seeds preferentially settle. The application of these structures in the field led to the formation of stable, raised sediment platforms and the spontaneous recruitment of salt-marsh pioneers in the following growing season. These recruits were composed primarily of the annual pioneering Salicornia genus, with densities of up to 140 individuals/m within the structures, a 60-fold increase over ambient densities. Lower abundances of five other perennial species were found within structures that did not appear elsewhere in the pioneer zone. Furthermore, recruits grew to be on average three times greater in mass inside of the structures than in the neighboring ambient environment. The success of this restoration design may be attributed to the combination of three factors: (1) enhanced seed retention, (2) suppressed mortality, and (3) accelerated growth rates on the elevated surfaces generated by the artificial structures. We argue that restoration approaches similar to the one shown here, wherein the conditions for natural establishment are actively mimicked to promote vegetation development, may serve as promising tools in many biogeomorphic ecosystems, ranging from coastal to arid ecosystems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365657 | PMC |
http://dx.doi.org/10.1002/eap.2333 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan.
Chiral magnetic textures give rise to unconventional magnetotransport phenomena such as the topological Hall effect and nonreciprocal electronic transport. While the correspondence between topology or symmetry of chiral magnetic structures and such transport phenomena has been well established, a microscopic understanding based on the spin-dependent band structure in momentum space remains elusive. Here, we demonstrate how a chiral magnetic superstructure introduces an asymmetry in the electronic band structure and triggers a nonreciprocal electronic transport in a centrosymmetric helimagnet α-EuP.
View Article and Find Full Text PDFTech Coloproctol
January 2025
Department of Colorectal Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Lateral lymph node dissection (LLND) is getting global attention as an a surgical option to reduce local recurrence in locally advanced rectal cancer. As the transanal total mesorectal excision (TaTME) is gaining popularity worldwide, a novel LLND approach was established adopting a two-team approach that combines the transabdominal and transanal approaches using the TaTME technique. This narrative review describes the advantages, anatomical landmarks, surgical techniques, and pitfalls of transanal LLND (TaLLND).
View Article and Find Full Text PDFInt Urogynecol J
January 2025
Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
Introduction And Hypothesis: The relationship between autophagy and pelvic organ prolapse (POP) remains unknown. The aim of this novel experimental study, utilizing tissue samples derived from women undergoing gynecological surgery, is to investigate the role of autophagy in mitigating collagen degradation in human vaginal fibroblasts induced by oxidative stress, with particular emphasis on its implications in the pathogenesis of POP. Exploring the role of autophagy in protecting against collagen degradation and cellular senescence in human vaginal fibroblasts under oxidative stress may offer new insights into therapeutic strategies for conditions such as POP.
View Article and Find Full Text PDFISME J
January 2025
DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Institute of Cancer Research, Sutton, Sutton, United Kingdom.
Purpose: Innate immune cell-based therapies have shown promising antitumor activity against solid and hematologic malignancies. AFM24, a bispecific innate cell engager, binds CD16A on natural killer (NK) cells/macrophages and EGFR on tumor cells, redirecting antitumor activity towards tumors. The safety and tolerability of AFM24 was evaluated in this Phase 1/2a dose escalation/dose expansion study in patients with recurrent or persistent, advanced solid tumors known to express EGFR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!