Pelvic organ prolapse (POP) is common among older women who have delivered children vaginally. While the pathophysiology is not fully delineated, POP can occur in part from insufficient repair of disrupted elastic matrix fibers. Quantification of structural changes to elastic fibers has not been described previously for POP. The goal of this paper is to present a validated technique for morphometric analysis of elastic fibers in vaginal tissue cultures from lysyl oxidase like-1 knock out (LOXL1 KO) mice with POP. The effect of LOXL1 KO, effect of POP, effect of culture, and effect of elastogenic treatment on the changes in elastin fiber characteristics were tested using vaginal tissues from wild type multiparous (WT), LOXL1 KO multiparous prolapsed (POP) and LOXL1 KO multiparous non-prolapsed (NP) mice. Our results show significantly higher mean aspect ratio, maximum diameter and perimeter length in POP compared to NP after 3 weeks of tissue culture. Further, treatment of POP tissues in culture with growth factors with previously documented elastogenic effects caused a significant increase in the mean area and perimeter length of elastic fibers. This technique thus appears to be useful in quantifying structural changes and can be used to assess the pathophysiology of POP and the effect of elastogenic treatments with potential for POP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376789 | PMC |
http://dx.doi.org/10.1007/s10439-021-02760-9 | DOI Listing |
Adv Healthc Mater
January 2025
Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400044, P. R. China.
Decellularized artificial blood vessels prepared using physical and chemical methods often exhibit limitations, including poor mechanical performance, susceptibility to inflammation and calcification, and reduced patency. Cross-linking techniques can enhance the stiffness, as well as anti-inflammatory and anti-calcification properties of decellularized vessels. However, conventional cross-linking methods fail to effectively alleviate residual stress post-decellularization, which significantly impacts the patency and vascular remodeling following the implantation of artificial vessels.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
The anatomical, histological, and histochemical characteristics of the foregut (FG), midgut (MG), and hindgut (HG), as well as their alterations during the ovarian cycle in female prawns, Macrobrachium rosenbergii, were investigated. The esophagus (ESO), cardia (CD), and pylorus (PY) are the main components of the FG. An epithelium (Ep) with thick cuticle (Cu) layers lining the ESO, and the ESO is encircled by the ESO glands.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Vascular Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany.
Thoracoabdominal aortic aneurysms (TAAAs) are rare but serious conditions characterized by dilation of the aorta characterized by remodeling of the vessel wall, with changes in the elastin and collagen content. Individuals with Marfan syndrome have a genetic predisposition for elastic fiber fragmentation and elastin degradation and are prone to early aneurysm formation and progression. Our objective was to analyze the medial collagen characteristics through histological, polarized light microscopy, and electron microscopy methods across the thoracic and abdominal aorta in twenty-five patients undergoing open surgical repair, including nine with Marfan syndrome.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Materials Science and Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City 21934, Egypt.
Polyetheretherketone (PEEK) has emerged as a revolutionary material in modern dentistry because of its unique combination of mechanical strength, biocompatibility, and versatility. This literature review examines the current applications and future potential of PEEK in various dental disciplines. PEEK's favorable properties, including its low specific weight, high strength-to-weight ratio, and ability to be easily machined, have led to its adoption in prosthetics, implantology, and dental esthetic restorations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!