Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation.

Light Sci Appl

State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, 610209, China.

Published: March 2021

With inherent orthogonality, both the spin angular momentum (SAM) and orbital angular momentum (OAM) of photons have been utilized to expand the dimensions of quantum information, optical communications, and information processing, wherein simultaneous detection of SAMs and OAMs with a single element and a single-shot measurement is highly anticipated. Here, a single azimuthal-quadratic phase metasurface-based photonic momentum transformation (PMT) is illustrated and utilized for vortex recognition. Since different vortices are converted into focusing patterns with distinct azimuthal coordinates on a transverse plane through PMT, OAMs within a large mode space can be determined through a single-shot measurement. Moreover, spin-controlled dual-functional PMTs are proposed for simultaneous SAM and OAM sorting, which is implemented by a single spin-decoupled metasurface that merges both the geometric phase and dynamic phase. Interestingly, our proposed method can detect vectorial vortices with both phase and polarization singularities, as well as superimposed vortices with a certain interval step. Experimental results obtained at several wavelengths in the visible band exhibit good agreement with the numerical modeling. With the merits of ultracompact device size, simple optical configuration, and prominent vortex recognition ability, our approach may underpin the development of integrated and high-dimensional optical and quantum systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7994415PMC
http://dx.doi.org/10.1038/s41377-021-00497-7DOI Listing

Publication Analysis

Top Keywords

spin-decoupled metasurface
8
simultaneous detection
8
orbital angular
8
momentum transformation
8
angular momentum
8
single-shot measurement
8
vortex recognition
8
metasurface simultaneous
4
detection spin
4
spin orbital
4

Similar Publications

This study presents a generalized design strategy for novel terahertz-wave polarization space-division multiplexing meta-devices, functioning as multi-polarization generators, modulators, and analyzers. It introduces the spin-decoupled phase control method by combining gradient phase design with circular polarization multiplexing techniques, enabling exceptional flexibility in controlling the polarization directions and spatial distributions of multiple output beams. The meta-device M-4D is significantly demonstrated as proof of concept, which converts an incident linearly polarized wave into four beams with distinct polarization angles.

View Article and Find Full Text PDF

With rapid development of holography, metasurface-based holographic communication scheme shows great potential in development of adaptive electromagnetic function. However, conventional passive metasurfaces are severely limited by poor reconfigurability, which makes it difficult to achieve wavefront manipulations in real time. Here, we propose a holographic communication strategy that on-demand target information is firstly acquired and encoded via a depth camera integrated with modified YOLOv5s target detection algorithm, then transmitted by software defined radio modules with long term evolution at 5 GHz, and finally reproduced in the form of holographic images by spin-decoupled programmable coding metasurfaces at 12 GHz after decoding through modified Gerchberg-Saxton algorithm.

View Article and Find Full Text PDF

Longitudinally continuous varying high-order cylindrical vector fields enabled by spin-decoupled metasurfaces.

Nanophotonics

April 2024

National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China.

The manipulation of vector optical fields in three-dimensional (3D) space plays a vital role in both fundamental research and practical implementations of polarization optics. However, existing studies mostly focus on 3D vector optical fields with limited modes. Here, an approach of spin-decoupled spatial partitioning is proposed to generate complex 3D vector optical fields with a customizable number of modes on demand.

View Article and Find Full Text PDF

Cylindrical vector beams (CVBs) hold considerable promise as high-capacity information carriers for multiplexing holography due to their mode orthogonality. In CVB holography, phase holograms are encoded onto the wave-front of CVBs with different mode orders while preserving their independence during reconstruction. However, a major challenge lies in the limited ability to manipulate the spatial phase and polarization distribution of CVBs independently.

View Article and Find Full Text PDF

High-efficiency and broadband asymmetric spin-orbit interaction based on high-order composite phase modulation.

Nanophotonics

September 2024

National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chengdu 610209, China.

Article Synopsis
  • Asymmetric spin-orbit interaction (ASOI) enhances traditional metasurfaces by overcoming symmetry limitations, enabling advancements in applications like holography and complex light manipulation.
  • * The study shows that ASOI can be achieved with meta-atoms that have rotational symmetry (C3), improving efficiency compared to commonly used C2 meta-atoms due to reduced sensitivity to structural size.
  • * The researchers demonstrated a spin-decoupled beam deflector and hologram device with an impressive average diffraction efficiency of about 84% over a wide wavelength range, paving the way for more efficient and versatile meta-devices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!