Monitoring of Escherichia coli concentrations in river water (RW) is essential to identify fecal pollution of the river. The objective of this study was to assess the suitability of a novel, simple and high throughput method developed in our laboratory to enumerate E. coli concentrations in RW samples. The method is based on the use of the synthetic substrate specific for the β-d-glucuronidase (GUS) produced by E. coli. GUS activities and E. coli concentrations were monitored at eight selected sites in rivers running through Sapporo, Japan. Because the fluorescence intensities of the synthetic substrate in the RW samples increased linearly over a 4-h incubation period, we could estimate the GUS activities of the RW samples. The GUS activities were highly correlated with E. coli concentrations at >100 most probable numbers 100 mL with a correlation coefficient of 0.87. The GUS activities of the RW samples collected from all sampling sites fitted well to a single correlation equation, which indicates that it was applicable to the estimation of E. coli concentrations regardless of the sampling sites. This method is simple, rapid, reliable, inexpensive, and high throughput, and is therefore useful for monitoring E. coli in RW.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2021.072DOI Listing

Publication Analysis

Top Keywords

coli concentrations
24
gus activities
16
coli
8
escherichia coli
8
concentrations river
8
river water
8
high throughput
8
synthetic substrate
8
activities samples
8
sampling sites
8

Similar Publications

Conversion of rice straw into nanocellulose offers a sustainable approach to agricultural waste management, yielding an industrially important product with potential applications. This work focuses on effectively extracting pure cellulose from both widely used Basmati and Parmal rice straw (BRS and PRS) using less alkali concentrations (3-5 % NaOH). The process was optimized via Box Behnken design at 90-150 °C temperatures for 90-150 min, which resulted in 88.

View Article and Find Full Text PDF

The SUMO fusion technology has immensely contributed to the soluble production of therapeutics and other recombinant proteins in E. coli. The structure-based functionality of SUMO protease has remained the primary determinant for choosing SUMO as a solubility enhancer tag.

View Article and Find Full Text PDF

The main objective of this study is to prepare sodium alginate (SA)-based biofilms incorporated with watercress oil (WCO) as an antimicrobial material for sustainable food packaging. The physicochemical, antioxidant, and antibacterial properties of the prepared bio-based films were investigated. The antioxidant activity showed a remarkable increase, with DPPH inhibition increasing from 13.

View Article and Find Full Text PDF

Hsp70, Hsp90, and ClpB/Hsp100 are molecular chaperones that help regulate proteostasis. Bacterial and yeast Hsp70s and their cochaperones function synergistically with Hsp90s to reactivate inactive and aggregated proteins by a mechanism that requires a direct interaction between Hsp90 and Hsp70 both in vitro and in vivo. and yeast Hsp70s also collaborate in bichaperone systems with ClpB and Hsp104, respectively, to disaggregate and reactivate aggregated proteins and amyloids such as prions.

View Article and Find Full Text PDF

Population pharmacokinetics and pulmonary modeling of eravacycline and the determination of microbiological breakpoint and cutoff of PK/PD.

Antimicrob Agents Chemother

January 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China.

Eravacycline is a broad-spectrum fluorocycline currently approved for complicated intra-abdominal infections (cIAIs). In lung-infection models, it is effective against methicillin-resistant (MRSA) and tetracycline-resistant MRSA. As such, we aimed to develop a population pharmacokinetic/pharmacodynamic (PK/PD) model to evaluate eravacycline's pulmonary distribution and kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!