Background: Artificial grafts such as polyethylene terephthalate (Dacron) and expanded polytetrafluoroethylene (ePTFE) are used for various cardiovascular surgical procedures. The compliance properties of prosthetic grafts could affect hemodynamic energy, which can be measured using the energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE). We investigated changes in the hemodynamic energy of prosthetic grafts.

Methods: In a simulation test, the changes in EEP for these grafts were estimated using COMSOL MULTIPHYSICS. The Young modulus, Poisson ratio, and density were used to analyze the grafts' material properties, and pre- and post-graft EEP values were obtained by computing the product of the pressure and velocity. In an study, Dacron and ePTFE grafts were anastomosed in an end-to-side fashion on the descending thoracic aorta of swine. The pulsatile pump flow was fixed at 2 L/min. Real-time flow and pressure were measured at the distal part of each graft, while clamping the other graft and the descending thoracic aorta. EEP and SHE were calculated and compared.

Results: In the simulation test, the mean arterial pressure decreased by 39% for all simulations. EEP decreased by 42% for both grafts, and by around 55% for the native blood vessels after grafting. The test showed no significant difference between both grafts in terms of EEP and SHE.

Conclusion: The post-graft hemodynamic energy was not different between the Dacron and ePTFE grafts. Artificial grafts are less compliant than native blood vessels; however, they can deliver pulsatile blood flow and hemodynamic energy without any significant energy loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038878PMC
http://dx.doi.org/10.5090/jcs.20.134DOI Listing

Publication Analysis

Top Keywords

hemodynamic energy
24
expanded polytetrafluoroethylene
8
grafts
8
artificial grafts
8
simulation test
8
dacron eptfe
8
eptfe grafts
8
descending thoracic
8
thoracic aorta
8
native blood
8

Similar Publications

Background: Hemodynamically unstable pelvic ring fractures from high-energy trauma are critical injuries in trauma care, requiring urgent intervention and precise diagnostics. With ongoing advancements in trauma management, treatment strategies have evolved, with some techniques becoming obsolete as new ones emerge. This study aimed to evaluate changes and trends in treatment algorithms for these injuries over approximately 40 years.

View Article and Find Full Text PDF
Article Synopsis
  • This study used computational fluid dynamics (CFD) to explore how blood flow dynamics in the draining veins of arteriovenous malformations (AVMs) relate to whether they rupture or not.
  • Researchers analyzed data from computed tomography angiography (CTA) and found that while the shape of the veins was similar in ruptured and unruptured cases, ruptured AVMs had significantly higher intravascular pressure and wall shear stress (WSS) in specific vein segments.
  • The findings suggest that ruptured AVMs are associated with higher blood flow velocity and pressure, particularly in the posterior segments of the draining veins, which may help in understanding AVM rupture mechanisms.
View Article and Find Full Text PDF

Background: Subclinical leaflet thrombosis (SLT) is a common complication after transcatheter aortic valve replacement (TAVR). Multidimensional CT (MDCT) is the main imaging mortality for the diagnosis of SLT but it enhances the risk of contrast-induced nephropathy. Our study aimed to use an innovative wearable acoustic cardiography (ACG) device to diagnose SLT as an alternative option.

View Article and Find Full Text PDF

Complex limb injuries are combination injuries that involve all components of a limb's tissue, such as skin, bone with its surrounding soft tissue cover, and neurovascular elements. Complex limb trauma often has a background of a significant mechanism of injuries such as high-velocity road traffic accidents, ballistic injuries, industrial accidents, and other major mechanisms of injuries which involve high amounts of energy transfer through these tissue layers. These injuries pose a major challenge to trauma and orthopaedic surgeons.

View Article and Find Full Text PDF

Unlabelled: Essential arterial hypertension (EAH) is a chronic non-communicable disease (CNCD), that develops in parallel with other pathologies of the CNCD group, the presence of which is promoted by hypodynamia with consequent disturbance of aerobic energy supply processes. These disorders include, in particular, degenerative-dystrophic processes of the locomotor system, comprising of the cervical spine. In turn, development of these processes can additionally worsen hemodynamics with disturbance of the oxygen transfer processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!