Lens array captures dim objects missed by giant telescopes.

Science

Govert Schilling is an astronomy journalist in Amersfoort, the Netherlands.

Published: March 2021

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.371.6536.1301DOI Listing

Publication Analysis

Top Keywords

lens array
4
array captures
4
captures dim
4
dim objects
4
objects missed
4
missed giant
4
giant telescopes
4
lens
1
captures
1
dim
1

Similar Publications

Underwater acoustic transducers need to expand the coverage of acoustic signals as much as possible in most ocean explorations, and the directivity indicators of transducers are difficult to change after the device is packaged, which makes the emergence angle of the underwater acoustic transducer limited in special operating environments, such as polar regions, submarine volcanoes, and cold springs. Taking advantage of the refractive characteristics of sound waves propagating in different media, the directivity indicators can be controlled by installing an acoustic lens outside the underwater acoustic transducer. To increase the detection range of an underwater acoustic transducer in a specific marine environment, a curvature-determining method for the diverging acoustic lens of an underwater acoustic transducer is proposed based on the acoustic ray tracing theory.

View Article and Find Full Text PDF

A Critical Review of the Decarbonisation Potential in the U.K. Cement Industry.

Materials (Basel)

January 2025

Sustainable Manufacturing Systems Centre, Faculty of Engineering and Applied Sciences, Cranfield University, Cranfield MK43 0AL, UK.

As urbanisation and infrastructure development continue to drive rising cement demand, the imperative to significantly reduce emissions from this emissions-intensive sector has become increasingly urgent, especially in the context of global climate goals such as achieving net zero emissions by 2050. This review examines the status, challenges and prospects of low-carbon cement technologies and mitigation strategies through the lens of the U.K.

View Article and Find Full Text PDF

The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein.

View Article and Find Full Text PDF

Contact lenses have become integral tools in the realm of ocular therapeutics, extending beyond their primary function of refractive correction to encompass a diverse array of therapeutic applications. This review explores the evolving role of contact lenses in managing various ocular conditions, highlighting their efficacy in enhancing patient outcomes. Initially developed to correct refractive errors, contact lenses now serve as effective vehicles for delivering medications directly to the ocular surface, offering targeted treatment for conditions such as dry eye syndrome and corneal ulcers.

View Article and Find Full Text PDF

Using light to image millimeter wave based on stacked meta-MEMS chip.

Light Sci Appl

January 2025

Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin, 300350, China.

A stacked metamaterial MEMS (meta-MEMS) chip is proposed, which can perfectly absorb electromagnetic waves, convert them into mechanical energy, drive movement of the optical micro-reflectors array, and detect millimeter waves. It is equivalent to using visible light to image a millimeter wave. The meta-MEMS adopts the design of upper and lower chip separation and then stacking to achieve the "dielectric-resonant-air-ground" structure, reduce the thickness of the metamaterial and MEMS structures, and improve the performance of millimeter wave imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!