Background: Transcranial direct current stimulation (DCS) has lasting effects that may be explained by a boost in synaptic long-term potentiation (LTP). We hypothesized that this boost is the result of a modulation of somatic spiking in the postsynaptic neuron, as opposed to indirect network effects. To test this directly we record somatic spiking in a postsynaptic neuron during LTP induction with concurrent DCS.
Methods: We performed rodent in-vitro patch-clamp recordings at the soma of individual CA1 pyramidal neurons. LTP was induced with theta-burst stimulation (TBS) applied concurrently with DCS. To test the causal role of somatic polarization, we manipulated polarization via current injections. We also used a computational multi-compartment neuron model that captures the effect of electric fields on membrane polarization and activity-dependent synaptic plasticity.
Results: TBS-induced LTP was enhanced when paired with anodal DCS as well as depolarizing current injections. In both cases, somatic spiking during the TBS was increased, suggesting that evoked somatic activity is the primary factor affecting LTP modulation. However, the boost of LTP with DCS was less than expected given the increase in spiking activity alone. In some cells, we also observed DCS-induced spiking, suggesting DCS also modulates LTP via induced network activity. The computational model reproduces these results and suggests that they are driven by both direct changes in postsynaptic spiking and indirect changes due to network activity.
Conclusion: DCS enhances synaptic plasticity by increasing postsynaptic somatic spiking, but we also find that an increase in network activity may boost but also limit this enhancement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8165013 | PMC |
http://dx.doi.org/10.1016/j.brs.2021.03.001 | DOI Listing |
J Biol Chem
January 2025
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA.
SARS-CoV-2 mRNA vaccines induce robust and persistent germinal centre (GC) B cell responses in humans. It remains unclear how the continuous evolution of the virus impacts the breadth of the induced GC B cell response. Using ultrasound-guided fine needle aspiration, we examined draining lymph nodes of nine healthy adults following bivalent booster immunization.
View Article and Find Full Text PDFJ Comput Neurosci
December 2024
School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells.
View Article and Find Full Text PDFbioRxiv
December 2024
Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Dr, MS8312, Gaithersburg, MD 20899, USA.
Somatic mosaicism is an important cause of disease, but mosaic and somatic variants are often challenging to detect because they exist in only a fraction of cells. To address the need for benchmarking subclonal variants in normal cell populations, we developed a benchmark containing mosaic variants in the Genome in a Bottle Consortium (GIAB) HG002 reference material DNA from a large batch of a normal lymphoblastoid cell line. First, we used a somatic variant caller with high coverage (300x) Illumina whole genome sequencing data from the Ashkenazi Jewish trio to detect variants in HG002 not detected in at least 5% of cells from the combined parental data.
View Article and Find Full Text PDFPLoS One
December 2024
Brain Signalling Laboratory, Section for Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Here we describe a type of depolarising plateau potentials (PPs; sustained depolarisations outlasting the stimuli) in layer 2/3 pyramidal cells (L2/3PC) in rat prefrontal cortex (PFC) slices, using whole-cell somatic recordings. To our knowledge, this PP type has not been described before. In particular, unlike previously described plateau potentials that originate in the large apical dendrite of L5 cortical pyramidal neurons, these L2/3PC PPs are generated independently of the apical dendrite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!