As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neubiorev.2021.03.015 | DOI Listing |
Neurobiol Dis
February 2025
Institute of Physiology I, Münster University, Münster, Germany. Electronic address:
Spike-wave-discharges (SWD) are the electrophysiological hallmark of absence epilepsy. SWD are generated in the thalamo-cortical network and a seizure onset zone was identified in the somatosensory cortex (S1). We have shown before that inhibition of the centromedian thalamic nucleus (CM) in GAERS rats resulted in a selective suppression of the spike component while rhythmic cortical 5-9 Hz oscillations remained present.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, 04100 Latina, Italy.
: Chronic migraine with medication-overuse headache (CM-MOH) is neurophysiologically characterized by increased cortical excitability with sensitization at both the thalamocortical and the cortical levels. It is unclear whether the increased cortical excitability could be reverted by medication withdrawal (i.e.
View Article and Find Full Text PDFClin Neurophysiol Pract
November 2024
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy.
Objective: Since the habituation deficit of evoked potentials could be related to abnormal thalamocortical drive, we searched for a modulatory effect of ketogenic diet (KD) on somatosensory-evoked thalamo-cortical activity. KD is effective in preventing migraine. Previous studies showed that KD normalises habituation of somatosensory and visual cortical evoked responses in parallel with a decrease in of migraine attack frequency.
View Article and Find Full Text PDFNeuroimage
November 2024
Functional Imaging Unit, Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Walther-Rathenau-Str. 46, Greifswald D-17475, Germany. Electronic address:
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!