Facile fabrication and characterization of kraft lignin@FeO nanocomposites using pH driven precipitation: Effects on increasing lignin content.

Int J Biol Macromol

Department of Chemical and Materials Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0256, USA; Integrative Science and Engineering Center, University of Dayton, 300 College Park, Dayton, OH 45469, USA. Electronic address:

Published: June 2021

This work offers a facile fabrication method for lignin nanocomposites through the assembly of kraft lignin onto magnetic nanoparticles (FeO) based on pH-driven precipitation, without needing organic solvents or lignin functionalization. Kraft lignin@FeO multicore nanocomposites fabrication proceeded using a simple, pH-driven precipitation technique. An alkaline solution for kraft lignin (pH 12) was rapidly injected into an aqueous-based FeO nanoparticle colloidal suspension (pH 7) under constant mixing conditions, allowing the fabrication of lignin magnetic nanocomposites. The effects of increasing lignin to initial FeO mass content (g/g), increasing in ratio from 1:1 to 20:1, are discussed with a complete chemical, structural, and morphological characterization. Results showed that nanocomposites fabricated above 5:1 lignin:FeO had the highest lignin coverage and content (>20%), possessed superparamagnetic properties (Ms ≈ 45,000 A·m/kg); had a negative surface charge (-30 mV), and formed multicore nanostructures (D ≈ 150 nm). The multicore lignin@FeO nanocomposites allowed rapid magnetically induced separations from suspension. After 5 min exposure to a rare-earth neodymium magnet (1.27 mm × 1.27 mm × 5.08 mm), lignin@FeO nanocomposites exhibited a maximum methylene blue removal efficiency of 74.1% ± 7.1%. These nanocomposites have potential in magnetically induced separations to remove organic dyes, heavy metals, or other lignin adsorbates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609404PMC
http://dx.doi.org/10.1016/j.ijbiomac.2021.03.105DOI Listing

Publication Analysis

Top Keywords

lignin@feo nanocomposites
12
lignin
9
facile fabrication
8
kraft lignin@feo
8
nanocomposites
8
effects increasing
8
increasing lignin
8
kraft lignin
8
lignin magnetic
8
ph-driven precipitation
8

Similar Publications

Thermophysical properties of graphene reinforced with polymethyl methacrylate nanoparticles for technological applications: a molecular model.

J Mol Model

January 2025

Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.

Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).

View Article and Find Full Text PDF

In current study, microstructural, mechanical and corrosion behaviour were investigated with incorporation of dual reinforced AZ91D surface composites. This research was carried out for enhancement of the bio-degradability in biological environment. The surface composites were successfully fabricated by friction stir processing method with a rotation speed of 800 rpm, travel speed of 80 mm/min and 2.

View Article and Find Full Text PDF

Metal-organic cage crosslinked nanocomposites with enhanced high-temperature capacitive energy storage performance.

Nat Commun

January 2025

State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

Polymer dielectric materials are widely used in electrical and electronic systems, and there have been increasing demands on their dielectric properties at high temperatures. Incorporating inorganic nanoparticles into polymers is an effective approach to improving their dielectric properties. However, the agglomeration of inorganic nanoparticles and the destabilization of the organic-inorganic interface at high temperatures have limited the development of nanocomposites toward large-scale industrial production.

View Article and Find Full Text PDF

Thermoelectric porous laser-induced graphene-based strain-temperature decoupling and self-powered sensing.

Nat Commun

January 2025

Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA.

Despite rapid developments of wearable self-powered sensors, it is still elusive to decouple the simultaneously applied multiple input signals. Herein, we report the design and demonstration of stretchable thermoelectric porous graphene foam-based materials via facile laser scribing for self-powered decoupled strain and temperature sensing. The resulting sensor can accurately detect temperature with a resolution of 0.

View Article and Find Full Text PDF

Monitoring reactive nitrogen species (RNS) in complex biological media is essential for evaluating the health status of living organisms; however, biofouling on the sensor surface restricts its applications. To overcome this issue, we developed an antifouling electrochemical sensing platform using copper-platinum bimetallic nanoparticles/N-doped biomass porous carbon fibres (Cu-PtNPs/N-BCF) for directly detecting peroxynitrite anion (ONOO), a major type of RNS. Cyclic voltammetry measurements demonstrated that the Cu-PtNPs/N-BCF-2 nanocomposite, synthesised at a molar ratio of 1:1 between Co and Zn, exhibited exceptional electrocatalytic activity for ONOO oxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!