Neonatal LPS exposure reduces ATP8A2 level in the prefrontal cortex in mice via increasing IFN-γ level.

Brain Res Bull

Department of Anatomy, School of Biosciences & Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China. Electronic address:

Published: June 2021

Neonatal lipopolysaccharide (LPS) exposure can cause depressive-like behaviors in rodents involving elevated interferon (IFN)-γ. Studies have linked down-regulation of prefrontal cortex (PFC) ATPase phospholipid transporting 8A2(ATP8A2) expression to depressive-like behaviors. In non-neuronal cells, IFN-γ could reduce ATP8A2 expression. Therefore, we hypothesized that neonatal LPS exposure might induce PFC ATP8A2 down-regulation by increasing the IFN-γ level. Here, C57BL6/J mice of both sexes received 3-dose-injections of LPS (50 μg/kg body weight, i.p.) on postnatal day (PND)5, PND7, and PND9. LPS-treated mice showed a transiently decreased PFC ATP8A2 expression indicated by western blot results. Moreover, a significant negative correlation of PFC ATP8A2 expression was found with the IFN-γ level. Using neutralizing mAb, IFN-γ was identified as the key mediator of LPS-induced PFC ATP8A2 decrease indicated by western blot and immunofluorescence results. In sum, neonatal LPS exposure reduced ATP8A2 level in PFC in mice via increasing IFN-γ level. This finding may help further understand the mechanism underlying LPS-induced impairments in brain development and function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2021.03.015DOI Listing

Publication Analysis

Top Keywords

lps exposure
16
ifn-γ level
16
pfc atp8a2
16
neonatal lps
12
increasing ifn-γ
12
atp8a2 expression
12
atp8a2 level
8
prefrontal cortex
8
mice increasing
8
depressive-like behaviors
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!