In recent decades, magnetic bead material has attracted considerable attention in water and wastewater purification. In this study, the potential of magnetic kaolinite immobilized in chitosan beads (MKa@CB) to remove Pb(II) and Cd(II) ions from an aqueous environment has been successfully investigated. The addition of magnetic kaolinite generates more active sites, whereas that of chitosan enhances the stability of synthesized bead materials, which enable them to effectively interact with the targeted contaminants. Various factors including agitation time, solution pH, and competitive ions were examined to optimize the removal efficiency of the MKa@CB. The adsorption kinetics and isotherm studies indicated that the adsorption fitted well to the pseudo-second-order kinetic model as well as to the Langmuir isotherm. The prepared adsorbent could be reused up to four cycles without any significant adsorption capacity loss. Thus, the synthesized MKa@4%CB can be a promising adsorbent in effectively removing Pb(II) and Cd(II) from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.117892 | DOI Listing |
ACS Nano
December 2024
Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.
Solution-phase epitaxy is a versatile method to synthesize functional nanomaterials with customized properties, where supports play a central role as they not only serve as nucleation templates but also greatly affect the local electronic structures. However, developing functional supports remains a great challenge. Herein, inspired by the commonly observed epitaxy of minerals in the natural environment, we report using calcination-modified kaolinite as the support for the epitaxial growth of hexagonal CoO nanoparticles (-CoO NPs), which enables over 40 times higher mass-specific activity toward HO electrochemical activation than the counterpart without the support.
View Article and Find Full Text PDFeNeuro
November 2024
Department of Neurology, University of Iowa, Iowa City, Iowa 52246
Sci Rep
October 2024
Department of Geosciences, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.
High-density cement slurries used in oil well cementing often face challenges such as particle settling, poor rheological properties, permeability, and compressive strength degradation, which can compromise zonal isolation and well integrity. This study focuses on using kaolinite, a clay mineral, as an additive due to its potential to improve the performance of high-density cement by modifying key properties. Several concentrations of kaolinite were examined to evaluate their influence on several cement properties such as rheology, thickening time, permeability, porosity, and compressive strength.
View Article and Find Full Text PDFCNS Neurosci Ther
October 2024
Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
Background: Hydrocephalus is characterized by secretion, circulation, and absorption disorder of cerebrospinal fluid (CSF) with high morbidity and complication rate. The relationship between inflammation and abnormal secretion of CSF by choroid plexus epithelium (CPE) had received more attention. In this study, we aim to detect the role of Toll-like receptor 4/nuclear factor-kappa B/Na+/K+/2Cl-cotransporter 1(TLR4/NF-κB/NKCC1) signal pathway in the development of hydrocephalus.
View Article and Find Full Text PDFHydrocephalus can affect brain function and motor ability. Current treatments mostly involve invasive surgeries, with a high risk of postoperative infections and failure. A successful animal model plays a significant role in developing new treatments for hydrocephalus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!