Integrating site-specific peptide reporters and targeted mass spectrometry enables rapid substrate-specific kinase assay at the nanogram cell level.

Anal Chim Acta

Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Tsing Hua University, Taiwan; Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Road, Taipei, 115, Taiwan; Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 10617, Taiwan. Electronic address:

Published: April 2021

Dysregulation of phosphorylation-mediated signaling drives the initiation and progression of many diseases. A substrate-specific kinase assay capable of quantifying the altered site-specific phosphorylation of its phenotype-dependent substrates provides better specificity to monitor a disease state. We report a sensitive and rapid substrate-specific kinase assay by integrating site-specific peptide reporter and multiple reaction monitoring (MRM)-MS platform for relative and absolute quantification of substrate-specific kinase activity at the sensitivity of nanomolar kinase and nanogram cell lysate. Using non-small cell lung cancer as a proof-of-concept, three substrate peptides selected from constitutive phosphorylation in tumors (HDGF-S165, RALY-S135, and NRD1-S94) were designed to demonstrate the feasibility. The assay showed good accuracy (<15% nominal deviation) and reproducibility (<15% CV). In PC9 cells, the measured activity for HDGF-S165 was 3.2 ± 0.2 fmol μg min, while RALY-S135 and NRD1-S94 showed 4- and 20-fold higher activity at the sensitivity of 25 ng and 5 ng lysate, respectively, suggesting different endogenous kinases for each substrate peptide. Without the conventional shotgun phosphoproteomics workflow, the overall pipeline from cell lysate to MS data acquisition only takes 3 h. The multiplexed analysis revealed differences in the phenotype-dependent substrate phosphorylation profiles across six NSCLC cell lines and suggested a potential association of HDGF-S165 and NRD1-S94 with TKI resistance. With the ease of design, sensitivity, accuracy, and reproducibility, this approach may offer rapid and sensitive assays for targeted quantification of the multiplexed substrate-specific kinase activity of small amounts of sample.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338341DOI Listing

Publication Analysis

Top Keywords

substrate-specific kinase
16
kinase assay
12
integrating site-specific
8
site-specific peptide
8
rapid substrate-specific
8
nanogram cell
8
kinase
5
peptide reporters
4
reporters targeted
4
targeted mass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!