The causative agent of crayfish plague, Aphanomyces astaci (Saprolegniales, Oomycota), is one of the 100 world's worst invasive alien species and represents a major threat to freshwater crayfish species worldwide. A better understanding of the biology and epidemiology of A. astaci relies on the application of efficient tools to detect the pathogen and assess its genetic diversity. In this study, we validated the specificity of two recently developed PCR-based approaches used to detect A. astaci groups. The first relies on the analysis of mitochondrial ribosomal rnnS (small) and rnnL (large) subunit sequences and the second, of sequences obtained by using genotype-specific primers designed from A. astaci whole genome sequencing. For this purpose, we tested the specificity against 76 selected isolates, including other oomycete species and the recently described species Aphanomyces fennicus, which, when used in nrITS-based specific tests for A. astaci, is known to result in a false positive. Under both approaches, we were able to efficiently and accurately identify A. astaci and its genetic groups in both pure cultures and clinical samples. We report that sequence analysis of the rnnS region alone is sufficient for the identification of A. astaci and a partial characterization of haplogroups. In contrast, the rnnL region alone is not sufficiently informative for A. astaci identification as other oomycete species present sequences identical to those of A. astaci.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2020.11.010DOI Listing

Publication Analysis

Top Keywords

aphanomyces astaci
8
genetic diversity
8
a astaci
8
oomycete species
8
species
5
astaci mtdna
4
mtdna insights
4
insights pathogen's
4
pathogen's differentiation
4
differentiation genetic
4

Similar Publications

Introduction: Crayfish plague is considered the most important crayfish disease globally. It is caused by the fungus-like agent, . This study aimed to identify and determine the prevalence of using PCR in narrow-clawed crayfish () populations from across Türkiye.

View Article and Find Full Text PDF

We adopted a morphometric approach to provide statistical support for the description of two different morphotypes (I, reproductive, II, non-reproductive) firstly observed in specimens caught in a population from Sardinia Island (western Mediterranean). The morphometric study was preceded by molecular taxonomic identification using the mitochondrial Cytochrome C Oxidase subunit I (COI) gene. The presence or absence of the pathogen , responsible for the plague, was also investigated using the ribosomal Internal Transcribed Spacer (ITS) marker.

View Article and Find Full Text PDF
Article Synopsis
  • Alien invasive species, particularly the pathogen Aphanomyces astaci, are a major cause of biodiversity loss in European freshwater ecosystems, severely impacting noble crayfish populations.
  • This study investigates how the noble crayfish's immune response changes over time when exposed to A. astaci, revealing a lack of effective defense mechanisms against this highly virulent strain.
  • The findings indicate a correlation between the progression of the disease and pathogen load, suggesting that the immune system of noble crayfish is unable to control the infection, contributing to their decline.
View Article and Find Full Text PDF
Article Synopsis
  • * A new online portal has been developed to provide up-to-date global distribution data for crayfish and their pathogens, improving accessibility and management decisions.
  • * This database is publicly available, allowing users to easily view, embed, and download data, aiming to enhance conservation planning and biodiversity management in the future.
View Article and Find Full Text PDF
Article Synopsis
  • * A discrete stage model was used to examine how the disease invades naive host populations, considering factors like age class variations and environmental transmission sources.
  • * The research suggests that even fatal infections can allow for the coexistence of hosts and parasites due to the survival of juvenile crayfish and differences in resistance within the population, making the model useful for managing emerging diseases in similar organisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!