Disease-associated metabolic alterations that impact satellite cells and muscle regeneration: perspectives and therapeutic outlook.

Nutr Metab (Lond)

Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.

Published: March 2021

Many chronic disease patients experience a concurrent loss of lean muscle mass. Skeletal muscle is a dynamic tissue maintained by continuous protein turnover and progenitor cell activity. Muscle stem cells, or satellite cells, differentiate (by a process called myogenesis) and fuse to repair and regenerate muscle. During myogenesis, satellite cells undergo extensive metabolic alterations; therefore, pathologies characterized by metabolic derangements have the potential to impair myogenesis, and consequently exacerbate skeletal muscle wasting. How disease-associated metabolic disruptions in satellite cells might be contributing to wasting is an important question that is largely neglected. With this review we highlight the impact of various metabolic disruptions in disease on myogenesis and skeletal muscle regeneration. We also discuss metabolic therapies with the potential to improve myogenesis, skeletal muscle regeneration, and ultimately muscle mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7992337PMC
http://dx.doi.org/10.1186/s12986-021-00565-0DOI Listing

Publication Analysis

Top Keywords

satellite cells
16
skeletal muscle
16
muscle regeneration
12
muscle
9
disease-associated metabolic
8
metabolic alterations
8
muscle mass
8
metabolic disruptions
8
myogenesis skeletal
8
cells
5

Similar Publications

Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear.

View Article and Find Full Text PDF

Background: Regeneration is the replacement of lost or damaged tissue with a functional copy. In axolotls and zebrafish, regeneration involves stem cells produced by de-differentiation. These cells form a growth zone which expresses developmental patterning genes at its apex.

View Article and Find Full Text PDF

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

January 2025

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

Analyzing Muscle Stem Cell Function Ex Vivo.

Methods Mol Biol

January 2025

Brandenburg Technische Universität Cottbus-Senftenberg, Faculty of Health Sciences, Senftenberg, Germany.

Muscle stem cells (MuSCs) lose a large proportion of their characteristics when removed from their niche, hampering the analysis of muscle stem cell functionality. However, the isolation and culture of single floating myofibers with their adjacent muscle stem cells allow the short-term culture and manipulation of muscle stem cells in conditions as close as possible to the endogenous niche. Here, the isolation, culture and transfection with siRNA of muscle stem cells on their adjacent myofibers from young as well as old mice are described.

View Article and Find Full Text PDF

Skeletal Muscle Stem Cells and the Microenvironment Regulation in Sarcopenia:A Review.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Health and Medical Department, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Sarcopenia is an age-related degenerative skeletal muscle disorder characterized by the loss of skeletal muscle mass and function during aging.Sarcopenia can impair the elderly's ability to perform daily activities and is associated with high risks of falls,fractures,and hospitalization.It seriously affects the quality of life of the elderly and becomes one of the major health problems in the aging society.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!