Progress in instrumentation, computer hardware, and inversion methods is encouraging the development of more advanced guided wave tomography techniques, especially for nondestructive testing of plate structures to characterize corrosion. An experimental S tomography performance assessment in the membrane regime is reported. One of the main interests of the fundamental membrane regime is that in this regime, waves are propagated over long distances. A 2 mm thick steel disk containing calibrated sharp artificial defects (flat bottom holes) is tested in both reflection and extinction modes. A reconstruction algorithm derived from the membrane approximation is presented. We expose a complete reflection mode inversion approach that includes beam inversion, waveform deconvolution, and thickness loss calibration. Non-linear correction factors are introduced and discussed for quantitative imaging. A width-regularity-depth description of defects is introduced to put the results into perspective with other defect geometries. The results show the relevance of the inversion method to enhance the imaging performance with regard to defect localization and sizing. Crucial points concerning instrumentation such as coupling, signal-to-noise ratio, excitation mode, coupling, selection of frequency, are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0003596 | DOI Listing |
Asia Pac J Ophthalmol (Phila)
January 2025
Rescue, Repair and Regeneration Theme, UCL Institute of Ophthalmology, London, United Kingdom. Electronic address:
Purpose: Recovery rate of rod photoreceptor sensitivity (S2 gradient) following a bleach is reduced in age-related macular degeneration (AMD) due to diminished delivery of retinol across a grossly altered Bruch's membrane. Since triterpenoid saponins are known to improve transport across Bruch's, we have assessed their possible use for reversing the visual deficits in AMD.
Design: Double-blind, placebo controlled randomised clinical trial.
J Phys Chem A
January 2025
Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia.
Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Hanyang University ERICA, Ansan 15588, Republic of Korea.
Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Autmatic Control, University of Kaiserslautern-Landau, 67653 Kaiserslautern, Germany.
Harsh operating conditions imposed by vehicular applications significantly limit the utilization of proton exchange membrane fuel cells (PEMFCs) in electric propulsion systems. Improper/poor management and supervision of rapidly varying current demands can lead to undesired electrochemical reactions and critical cell failures. Among other failures, flooding and catalytic degradation are failure mechanisms that directly impact the composition of the membrane electrode assembly and can cause irreversible cell performance deterioration.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:
Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!