Antiproliferative activity of thiazole and oxazole derivatives: A systematic review of in vitro and in vivo studies.

Biomed Pharmacother

Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia. Electronic address:

Published: June 2021

Thiazole and oxazole are compounds with a heterocyclic nucleus that have attracted the attention of medicinal chemistry due to the great variety of biological activities that they enable. In recent years, their study has increased, finding a wide range of biological activities, including antifungal, antiparasitic, anti-inflammatory, and anticancer activities. This systematic review provides evidence from the literature on the antiproliferative and antitumor activities of thiazole and oxazole and their derivatives from 2014 to April 2020. Three bibliographical databases were consulted (PubMed, Web of Science, and Scopus), and a total of 32 studies were included in this paper based on our eligibility criteria. The analysis of the activity-structure relationship allows us to conclude that most of the promising compounds identified contained thiazole nuclei or derivatives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111495DOI Listing

Publication Analysis

Top Keywords

thiazole oxazole
12
oxazole derivatives
8
systematic review
8
biological activities
8
antiproliferative activity
4
thiazole
4
activity thiazole
4
derivatives systematic
4
review vitro
4
vitro vivo
4

Similar Publications

In the current study, a novel series of 1,2,4-oxadiazoles were designed, synthesized, and evaluated for their biological activities. A cell-based antiproliferative screening was accomplished on the newly synthesized 1,2,4-oxadiazoles along with our previously reported aryl(alkyl)azoles (AAAs) containing middle heterocyclic cores thiazole and oxazole. Among the tested compounds, naphthyl- thiazoles demonstrated higher antiproliferative activity and B3 was identified as the most potent compound with IC values in the range of 2.

View Article and Find Full Text PDF

Pyruvate Kinase-Based Novel 2-Thiazol-2-yl-1,3,4-oxadiazoles Discovery as Fungicidal Highly Active Leads.

J Agric Food Chem

January 2025

State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.

To discover novel inhibitors of pyruvate kinase (PK) as fungicidal candidates, a series of 2-thiazol-2-yl-1,3,4-oxadiazole derivatives were designed by a prediction model with PK (RsPK) as a protein target and as a ligand. Fungicidal screening indicated that , , , , , , , and exhibited equal or higher activity compared to against , , or . To our surprise, showed comparable activity to flutriafol with an EC of 0.

View Article and Find Full Text PDF

Ru(II)-Catalyzed "On Water" direct aryl C(sp)-H amidation of 2-arylbenzo[d]-thiazole/oxazole with acyl azide is reported under silver-free condition. Deuterium scrambling experiments suggested reversible C-H activation catalyzed by active cationic ruthenium species. The organic solvents such as DCE, DMF, DMSO, MeCN, dioxane, and PhMe were not conducive for the C-H amidation except for PhCl in which case, however, inferior yield (31 %) was obtained.

View Article and Find Full Text PDF

Genome sequence of sp. Ash2021, a free-living species isolated from forest soil.

Microbiol Resour Announc

January 2025

Ecology & Environment, Scion, Christchurch, New Zealand.

sp. Ash2021 is a free-living soil bacterium isolated from a forest in Canterbury, New Zealand. The genome comprises of a 9,328,819 bp chromosome and a 375,468 bp plasmid.

View Article and Find Full Text PDF

Two novel SNS-donor palladium(II) complexes of benzoxazole and benzothiazole derivatives as potential anticancer agents.

Dalton Trans

December 2024

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technologies, Jianghan University, Wuhan 430056, P. R. China.

Two novel mononuclear palladium(II) complexes, [PdL1Cl]Cl (1) and [PdL2Cl]Cl (2) with SNS-donor ligands [where L1 = -(4-(benzo[]oxazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide, L2 = -(4-(benzo[]thiazol-2-yl)phenyl)-2-(bis(2-ethylthioethyl)amino)acetamide], were synthesized and characterized. antiproliferative activity tests showed that the two palladium(II) complexes displayed excellent antiproliferative activity against all tested cancer cell lines, especially human colon cancer HCT-116, human liver cancer HepG-2, and human breast cancer MDA-MB-231 cells. Spectacularly, complexes 1 and 2 exhibited approximately 8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!