Background: Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the Leishmania genus. Currently, the treatment has limited effectiveness and high toxicity, is expensive, requires long-term treatment, induces significant side effects, and promotes drug resistance. Thus, new therapeutic strategies must be developed to find alternative compounds with high efficiency and low cost. Solidagenone (SOL), one of the main constituents of Solidago chilensis, has shown gastroprotective, anti-inflammatory and immunomodulatory effects.

Purpose: This study assessed the in vitro effect of SOL on promastigotes and Leishmania amazonensis-infected macrophages, as well its microbicide and immunomodulatory mechanisms.

Methods: SOL was isolated from the roots of S. chilensis, 98% purity, and identified by chromatographic methods, and the effect of SOL on leishmanicidal activity against promastigotes in vitro, SOL-induced cytotoxicity in THP-1, J774 cells, sheep erythrocytes, and L. amazonensis-infected J774 macrophages, and the mechanisms of death involved in this action were evaluated.

Results: In silico predictions showed good drug-likeness potential for SOL with high oral bioavailability and intestinal absorption. SOL treatment (10-160 μM) inhibited promastigote proliferation 24, 48, and 72 h after treatment. After 24 h of treatment, SOL at the IC (34.5 μM) and 2 × the IC (69 μM) induced several morphological and ultrastructural changes in promastigotes, altered the cell cycle and cellular volume, increased phosphatidylserine exposure on the cell surface, induced the loss of plasma membrane integrity, increased the reactive oxygen species (ROS) level, induced loss of mitochondrial integrity (characterized by an apoptosis-like process), and increased the number of lipid droplets and autophagic vacuoles. Additionally, SOL induced low cytotoxicity in J774 murine macrophages (CC of 1587 μM), THP-1 human monocytes (CC of 1321 μM), and sheep erythrocytes. SOL treatment reduced the percentage of L. amazonensis-infected macrophages and the number of amastigotes per macrophage (IC 9.5 μM), reduced TNF-α production and increased IL-12p70, ROS and nitric oxide (NO) levels.

Conclusion: SOL showed in vitro leishmanicidal effects against the promastigotes by apoptosis-like mechanism and amastigotes by reducing TNF-α and increasing IL-12p70, ROS, and NO levels, suggesting their potential as a candidate for use in further studies on the design of antileishmanial drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2021.153536DOI Listing

Publication Analysis

Top Keywords

sol
10
amazonensis-infected macrophages
8
sheep erythrocytes
8
sol treatment
8
induced loss
8
il-12p70 ros
8
treatment
6
promastigotes
5
solidagenone acts
4
acts promastigotes
4

Similar Publications

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

The dual impact of education and occupation on cognitive functioning in older Mexican adults: A cross-sectional exploratory study.

SSM Popul Health

March 2025

Department of Population Health & Health Disparities, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, USA.

This research investigated the relationship between cognitive performance and an individual's educational attainment as well as occupational mental demands among Mexican adults aged 50 or older. We hypothesized that cognitively demanding work boosts cognitive performance for older adults regardless of their education level. To test our hypothesis, we analyzed data on 12,939 individuals in the 2012 Mexican Health and Aging Study using a Generalized Linear Model with a Gaussian family and identity link function.

View Article and Find Full Text PDF

In the present study, a novel voltammetric sensor based on a boron-doped copper oxide/graphene (B-CuO-Gr) nanocomposite and molecularly imprinted polymer (MIP) was developed for the detection of paclobutrazol (PAC) in apple and orange juice samples. The B-CuO-Gr nanocomposite was prepared using sol-gel and calcination methods. After modifying glassy carbon electrodes with the B-CuO-Gr nanocomposite, PAC-imprinted electrodes were prepared in the presence of 100.

View Article and Find Full Text PDF

Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.

View Article and Find Full Text PDF

Thermosensitive-based synergistic antibacterial effects of novel LL37@ZPF-2 loaded poloxamer hydrogel for infected skin wound healing.

Int J Pharm

January 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, State Key Laboratory of Biochemical Engineering, Chinese Academy of Sciences, Beijing 100190 China; Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 China. Electronic address:

Trauma healing is the process of healing after the body has been subjected to an external force and the skin and other tissues have become dissected or defective, showing the synergistic effect of various processes. Therefore, the investigation of innovative wound dressings has significant research and clinical implications. In this study, we constructed a zinc based metal-organic framework (MOF) and loaded with antimicrobial peptide LL37 to prepare LL37@ZPF-2 (ZPF = zeolite pyrimidine backbone), which was subsequently integrated with Poloxamer 407 to fabricate LL37@ZPF-2 thermosensitive hydrogel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!